Michael Yoder


2023

pdf bib
A Weakly Supervised Classifier and Dataset of White Supremacist Language
Michael Yoder | Ahmad Diab | David Brown | Kathleen Carley
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

We present a dataset and classifier for detecting the language of white supremacist extremism, a growing issue in online hate speech. Our weakly supervised classifier is trained on large datasets of text from explicitly white supremacist domains paired with neutral and anti-racist data from similar domains. We demonstrate that this approach improves generalization performance to new domains. Incorporating anti-racist texts as counterexamples to white supremacist language mitigates bias.

pdf bib
Identity Construction in a Misogynist Incels Forum
Michael Yoder | Chloe Perry | David Brown | Kathleen Carley | Meredith Pruden
The 7th Workshop on Online Abuse and Harms (WOAH)

Online communities of involuntary celibates (incels) are a prominent source of misogynist hate speech. In this paper, we use quantitative text and network analysis approaches to examine how identity groups are discussed on incels.is, the largest black-pilled incels forum. We find that this community produces a wide range of novel identity terms and, while terms for women are most common, mentions of other minoritized identities are increasing. An analysis of the associations made with identity groups suggests an essentialist ideology where physical appearance, as well as gender and racial hierarchies, determine human value. We discuss implications for research into automated misogynist hate speech detection.

2022

pdf bib
How Hate Speech Varies by Target Identity: A Computational Analysis
Michael Yoder | Lynnette Ng | David West Brown | Kathleen Carley
Proceedings of the 26th Conference on Computational Natural Language Learning (CoNLL)

This paper investigates how hate speech varies in systematic ways according to the identities it targets. Across multiple hate speech datasets annotated for targeted identities, we find that classifiers trained on hate speech targeting specific identity groups struggle to generalize to other targeted identities. This provides empirical evidence for differences in hate speech by target identity; we then investigate which patterns structure this variation. We find that the targeted demographic category (e.g. gender/sexuality or race/ethnicity) appears to have a greater effect on the language of hate speech than does the relative social power of the targeted identity group. We also find that words associated with hate speech targeting specific identities often relate to stereotypes, histories of oppression, current social movements, and other social contexts specific to identities. These experiments suggest the importance of considering targeted identity, as well as the social contexts associated with these identities, in automated hate speech classification

2021

pdf bib
FanfictionNLP: A Text Processing Pipeline for Fanfiction
Michael Yoder | Sopan Khosla | Qinlan Shen | Aakanksha Naik | Huiming Jin | Hariharan Muralidharan | Carolyn Rosé
Proceedings of the Third Workshop on Narrative Understanding

Fanfiction presents an opportunity as a data source for research in NLP, education, and social science. However, answering specific research questions with this data is difficult, since fanfiction contains more diverse writing styles than formal fiction. We present a text processing pipeline for fanfiction, with a focus on identifying text associated with characters. The pipeline includes modules for character identification and coreference, as well as the attribution of quotes and narration to those characters. Additionally, the pipeline contains a novel approach to character coreference that uses knowledge from quote attribution to resolve pronouns within quotes. For each module, we evaluate the effectiveness of various approaches on 10 annotated fanfiction stories. This pipeline outperforms tools developed for formal fiction on the tasks of character coreference and quote attribution

2017

pdf bib
Roles and Success in Wikipedia Talk Pages: Identifying Latent Patterns of Behavior
Keith Maki | Michael Yoder | Yohan Jo | Carolyn Rosé
Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

In this work we investigate how role-based behavior profiles of a Wikipedia editor, considered against the backdrop of roles taken up by other editors in discussions, predict the success of the editor at achieving an impact on the associated article. We first contribute a new public dataset including a task predicting the success of Wikipedia editors involved in discussion, measured by an operationalization of the lasting impact of their edits in the article. We then propose a probabilistic graphical model that advances earlier work inducing latent discussion roles using the light supervision of success in the negotiation task. We evaluate the performance of the model and interpret findings of roles and group configurations that lead to certain outcomes on Wikipedia.

pdf bib
Modeling Dialogue Acts with Content Word Filtering and Speaker Preferences
Yohan Jo | Michael Yoder | Hyeju Jang | Carolyn Rosé
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

We present an unsupervised model of dialogue act sequences in conversation. By modeling topical themes as transitioning more slowly than dialogue acts in conversation, our model de-emphasizes content-related words in order to focus on conversational function words that signal dialogue acts. We also incorporate speaker tendencies to use some acts more than others as an additional predictor of dialogue act prevalence beyond temporal dependencies. According to the evaluation presented on two dissimilar corpora, the CNET forum and NPS Chat corpus, the effectiveness of each modeling assumption is found to vary depending on characteristics of the data. De-emphasizing content-related words yields improvement on the CNET corpus, while utilizing speaker tendencies is advantageous on the NPS corpus. The components of our model complement one another to achieve robust performance on both corpora and outperform state-of-the-art baseline models.

pdf bib
Code-Switching as a Social Act: The Case of Arabic Wikipedia Talk Pages
Michael Yoder | Shruti Rijhwani | Carolyn Rosé | Lori Levin
Proceedings of the Second Workshop on NLP and Computational Social Science

Code-switching has been found to have social motivations in addition to syntactic constraints. In this work, we explore the social effect of code-switching in an online community. We present a task from the Arabic Wikipedia to capture language choice, in this case code-switching between Arabic and other languages, as a predictor of social influence in collaborative editing. We find that code-switching is positively associated with Wikipedia editor success, particularly borrowing technical language on pages with topics less directly related to Arabic-speaking regions.