Mingjie Zhong
2024
Retrieval and Reasoning on KGs: Integrate Knowledge Graphs into Large Language Models for Complex Question Answering
Yixin Ji
|
Kaixin Wu
|
Juntao Li
|
Wei Chen
|
Mingjie Zhong
|
Xu Jia
|
Min Zhang
Findings of the Association for Computational Linguistics: EMNLP 2024
Despite Large Language Models (LLMs) have performed impressively in various Natural Language Processing (NLP) tasks, their inherent hallucination phenomena severely challenge their credibility in complex reasoning. Combining explainable Knowledge Graphs (KGs) with LLMs is a promising path to address this issue. However, structured KGs are difficult to utilize, and how to make LLMs understand and incorporate them is a challenging topic. We thereby reorganize a more efficient structure of KGs, while designing the KG-related instruction tuning and continual pre-training strategies to enable LLMs to learn and internalize this form of representation effectively. Moreover, we construct subgraphs to further enhance the retrieval capabilities of KGs via CoT reasoning. Extensive experiments on two KGQA datasets demonstrate that our model achieves convincing performance compared to strong baselines.