Mingqian He
2024
Advancing Process Verification for Large Language Models via Tree-Based Preference Learning
Mingqian He
|
Yongliang Shen
|
Wenqi Zhang
|
Zeqi Tan
|
Weiming Lu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Large Language Models (LLMs) have demonstrated remarkable potential in handling complex reasoning tasks by generating step-by-step rationales. Some methods have proven effective in boosting accuracy by introducing extra verifiers to assess these paths. However, existing verifiers, typically trained on binary-labeled reasoning paths, fail to fully utilize the relative merits of intermediate steps, thereby limiting the effectiveness of the feedback provided. To overcome this limitation, we propose Tree-based Preference Learning Verifier (Tree-PLV), a novel approach that constructs reasoning trees via a best-first search algorithm and collects step-level paired data for preference training. Compared to traditional binary classification, step-level preferences more finely capture the nuances between reasoning steps, allowing for a more precise evaluation of the complete reasoning path. We empirically evaluate Tree-PLV across a range of arithmetic and commonsense reasoning tasks, where it significantly outperforms existing benchmarks. For instance, Tree-PLV achieved substantial performance gains over the Mistral-7B self-consistency baseline on GSM8K (67.55% → 82.79%), MATH (17.00% → 26.80%), CSQA (68.14% → 72.97%), and StrategyQA (82.86% → 83.25%). Additionally, our study explores the appropriate granularity for applying preference learning, revealing that step-level guidance provides feedback that better aligns with the evaluation of the reasoning process.
Multimodal Self-Instruct: Synthetic Abstract Image and Visual Reasoning Instruction Using Language Model
Wenqi Zhang
|
Zhenglin Cheng
|
Yuanyu He
|
Mengna Wang
|
Yongliang Shen
|
Zeqi Tan
|
Guiyang Hou
|
Mingqian He
|
Yanna Ma
|
Weiming Lu
|
Yueting Zhuang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Although most current large multimodal models (LMMs) can already understand photos of natural scenes and portraits, their understanding of abstract images, e.g., charts, maps, or layouts, and visual reasoning capabilities remains quite rudimentary. They often struggle with simple daily tasks, such as reading time from a clock, understanding a flowchart, or planning a route using a road map. In light of this, we design a multi-modal self-instruct, utilizing large language models and their code capabilities to synthesize massive abstract images and visual reasoning instructions across daily scenarios. Our strategy effortlessly creates a multimodal benchmark with 11,193 instructions for eight visual scenarios: charts, tables, simulated maps, dashboards, flowcharts, relation graphs, floor plans, and visual puzzles. This benchmark, constructed with simple lines and geometric elements, exposes the shortcomings of most advanced LMMs like GPT-4V and Llava in abstract image understanding, spatial relations reasoning, and visual element induction. Besides, to verify the quality of our synthetic data, we fine-tune an LMM using 62,476 synthetic chart, table and road map instructions. The results demonstrate improved chart understanding and map navigation performance, and also demonstrate potential benefits for other visual reasoning tasks.
Search
Fix data
Co-authors
- Weiming Lu 2
- Yongliang Shen 2
- Zeqi Tan 2
- Wenqi Zhang 2
- Zhenglin Cheng 1
- show all...