The intricate relationship between language and culture has long been a subject of exploration within the realm of linguistic anthropology. Large Language Models (LLMs), promoted as repositories of collective human knowledge, raise a pivotal question: do these models genuinely encapsulate the diverse knowledge adopted by different cultures? Our study reveals that these models demonstrate greater cultural alignment along two dimensions—firstly, when prompted with the dominant language of a specific culture, and secondly, when pretrained with a refined mixture of languages employed by that culture. We quantify cultural alignment by simulating sociological surveys, comparing model responses to those of actual survey participants as references. Specifically, we replicate a survey conducted in various regions of Egypt and the United States through prompting LLMs with different pretraining data mixtures in both Arabic and English with the personas of the real respondents and the survey questions. Further analysis reveals that misalignment becomes more pronounced for underrepresented personas and for culturally sensitive topics, such as those probing social values. Finally, we introduce Anthropological Prompting, a novel method leveraging anthropological reasoning to enhance cultural alignment. Our study emphasizes the necessity for a more balanced multilingual pretraining dataset to better represent the diversity of human experience and the plurality of different cultures with many implications on the topic of cross-lingual transfer.
Diacritization plays a pivotal role for meaning disambiguation and improving readability in Arabic texts. Efforts have long focused on marking every eligible character (Full Diacritization). Overlooked in comparison, Partial Diacritzation (‘PD‘) is the selection of a subset of characters to be annotated to aid comprehension only where needed. Research has indicated that excessive diacritic marks can hinder skilled readers—reducing reading speed and accuracy. We conduct a behavioral experiment and show that partially marked text is often easier to read than fully marked text, and sometimes easier than plain text. In this light, we introduce Context-Contrastive Partial Diacritization (‘CCPD‘)—a novel approach to ‘PD‘ which integrates seamlessly with existing Arabic diacritization systems. ‘CCPD‘ processes each word twice, once with context and once without, and diacritizes only the characters with disparities between the two inferences. Further, we introduce novel indicators for measuring partial diacritization quality to help establish this as a machine learning task. Lastly, we introduce ‘TD2‘, a Transformer-variant of an established model which offers a markedly different performance profile on our proposed indicators compared to all other known systems.
Language Models pretrained on large textual data have been shown to encode different types of knowledge simultaneously. Traditionally, only the features from the last layer are used when adapting to new tasks or data. We put forward that, when using or finetuning deep pretrained models, intermediate layer features that may be relevant to the downstream task are buried too deep to be used efficiently in terms of needed samples or steps. To test this, we propose a new layer fusion method: Depth-Wise Attention (DWAtt), to help re-surface signals from non-final layers. We compare DWAtt to a basic concatenation-based layer fusion method (Concat), and compare both to a deeper model baseline—all kept within a similar parameter budget. Our findings show that DWAtt and Concat are more step- and sample-efficient than the baseline, especially in the few-shot setting. DWAtt outperforms Concat on larger data sizes. On CoNLL-03 NER, layer fusion shows 3.68 − 9.73% F1 gain at different few-shot sizes. The layer fusion models presented significantly outperform the baseline in various training scenarios with different data sizes, architectures, and training constraints.
A Reverse Dictionary is a tool enabling users to discover a word based on its provided definition, meaning, or description. Such a technique proves valuable in various scenarios, aiding language learners who possess a description of a word without its identity, and benefiting writers seeking precise terminology. These scenarios often encapsulate what is referred to as the “Tip-of-the-Tongue” (TOT) phenomena. In this work, we present our winning solution for the Arabic Reverse Dictionary shared task. This task focuses on deriving a vector representation of an Arabic word from its accompanying description. The shared task encompasses two distinct subtasks: the first involves an Arabic definition as input, while the second employs an English definition. For the first subtask, our approach relies on an ensemble of finetuned Arabic BERT-based models, predicting the word embedding for a given definition. The final representation is obtained through averaging the output embeddings from each model within the ensemble. In contrast, the most effective solution for the second subtask involves translating the English test definitions into Arabic and applying them to the finetuned models originally trained for the first subtask. This straightforward method achieves the highest score across both subtasks.
We propose eBLEU, a metric inspired by BLEU metric that uses embedding similarities instead of string matches. We introduce meaning diffusion vectors to enable matching n-grams of semantically similar words in a BLEU-like algorithm, using efficient, non-contextual word embeddings like fastText. On WMT23 data, eBLEU beats BLEU and ChrF by around 3.8% system-level score, approaching BERTScore at −0.9% absolute difference. In WMT22 scenarios, eBLEU outperforms f101spBLEU and ChrF in MQM by 2.2%−3.6%. Curiously, on MTurk evaluations, eBLEU surpasses past methods by 3.9%−8.2% (f200spBLEU, COMET-22). eBLEU presents an interesting middle-ground between traditional metrics and pretrained metrics.
In this paper, we present the results and findings of the Shared Task on Gender Rewriting, which was organized as part of the Seventh Arabic Natural Language Processing Workshop. The task of gender rewriting refers to generating alternatives of a given sentence to match different target user gender contexts (e.g., a female speaker with a male listener, a male speaker with a male listener, etc.). This requires changing the grammatical gender (masculine or feminine) of certain words referring to the users. In this task, we focus on Arabic, a gender-marking morphologically rich language. A total of five teams from four countries participated in the shared task.
In this paper, we tackle the Nuanced Arabic Dialect Identification (NADI) shared task (Abdul-Mageed et al., 2021) and demonstrate state-of-the-art results on all of its four subtasks. Tasks are to identify the geographic origin of short Dialectal (DA) and Modern Standard Arabic (MSA) utterances at the levels of both country and province. Our final model is an ensemble of variants built on top of MARBERT that achieves an F1-score of 34.03% for DA at the country-level development set—an improvement of 7.63% from previous work.
This paper presents the description of our submission to WMT20 sentence filtering task. We combine scores from custom LASER built for each source language, a classifier built to distinguish positive and negative pairs and the original scores provided with the task. For the mBART setup, provided by the organizers, our method shows 7% and 5% relative improvement, over the baseline, in sacreBLEU score on the test set for Pashto and Khmer respectively.
We propose a novel architecture for labelling character sequences that achieves state-of-the-art results on the Tashkeela Arabic diacritization benchmark. The core is a two-level recurrence hierarchy that operates on the word and character levels separately—enabling faster training and inference than comparable traditional models. A cross-level attention module further connects the two and opens the door for network interpretability. The task module is a softmax classifier that enumerates valid combinations of diacritics. This architecture can be extended with a recurrent decoder that optionally accepts priors from partially diacritized text, which improves results. We employ extra tricks such as sentence dropout and majority voting to further boost the final result. Our best model achieves a WER of 5.34%, outperforming the previous state-of-the-art with a 30.56% relative error reduction.