Mukesh Mohania


2024

pdf bib
SymTax: Symbiotic Relationship and Taxonomy Fusion for Effective Citation Recommendation
Karan Goyal | Mayank Goel | Vikram Goyal | Mukesh Mohania
Findings of the Association for Computational Linguistics: ACL 2024

Citing pertinent literature is pivotal to writing and reviewing a scientific document. Existing techniques mainly focus on the local context or the global context for recommending citations but fail to consider the actual human citation behaviour. We propose SymTax, a three-stage recommendation architecture that considers both the local and the global context, and additionally the taxonomical representations of query-candidate tuples and the Symbiosis prevailing amongst them. SymTax learns to embed the infused taxonomies in the hyperbolic space and uses hyperbolic separation as a latent feature to compute query-candidate similarity. We build a novel and large dataset ArSyTa containing 8.27 million citation contexts and describe the creation process in detail. We conduct extensive experiments and ablation studies to demonstrate the effectiveness and design choice of each module in our framework. Also, combinatorial analysis from our experiments shed light on the choice of language models (LMs) and fusion embedding, and the inclusion of section heading as a signal. Our proposed module that captures the symbiotic relationship solely leads to performance gains of 26.66% and 39.25% in Recall@5 w.r.t. SOTA on ACL-200 and RefSeer datasets, respectively. The complete framework yields a gain of 22.56% in Recall@5 wrt SOTA on our proposed dataset. The code and dataset are available at https://github.com/goyalkaraniit/SymTax.

2023

pdf bib
Auto-req: Automatic detection of pre-requisite dependencies between academic videos
Rushil Thareja | Ritik Garg | Shiva Baghel | Deep Dwivedi | Mukesh Mohania | Ritvik Kulshrestha
Proceedings of the 18th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2023)

Online learning platforms offer a wealth of educational material, but as the amount of content on these platforms grows, students may struggle to determine the most efficient order in which to cover the material to achieve a particular learning objective. In this paper, we propose a feature-based method for identifying pre-requisite dependencies between academic videos. Our approach involves using a transcript engine with a language model to transcribe domain-specific terms and then extracting novel similarity-based features to determine pre-requisite dependencies between video transcripts. This approach succeeds due to the development of a novel corpus of K-12 academic text, which was created using a proposed feature-based document parser. We evaluate our method on hand-annotated datasets for transcript extraction, video pre-requisites determination, and textbook parsing, which we have released. Our method for pre-requisite edge determination shows significant improvement (+4.7%-10.24% F1-score) compared to existing methods.

2022

pdf bib
Multi-Relational Graph Transformer for Automatic Short Answer Grading
Rajat Agarwal | Varun Khurana | Karish Grover | Mukesh Mohania | Vikram Goyal
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

The recent transition to the online educational domain has increased the need for Automatic Short Answer Grading (ASAG). ASAG automatically evaluates a student’s response against a (given) correct response and thus has been a prevalent semantic matching task. Most existing methods utilize sequential context to compare two sentences and ignore the structural context of the sentence; therefore, these methods may not result in the desired performance. In this paper, we overcome this problem by proposing a Multi-Relational Graph Transformer, MitiGaTe, to prepare token representations considering the structural context. Abstract Meaning Representation (AMR) graph is created by parsing the text response and then segregated into multiple subgraphs, each corresponding to a particular relationship in AMR. A Graph Transformer is used to prepare relation-specific token embeddings within each subgraph, then aggregated to obtain a subgraph representation. Finally, we compare the correct answer and the student response subgraph representations to yield a final score. Experimental results on Mohler’s dataset show that our system outperforms the existing state-of-the-art methods. We have released our implementation https://github.com/kvarun07/asag-gt, as we believe that our model can be useful for many future applications.

2011

pdf bib
Using Text Reviews for Product Entity Completion
Mrinmaya Sachan | Tanveer Faruquie | L. V. Subramaniam | Mukesh Mohania
Proceedings of 5th International Joint Conference on Natural Language Processing

2010

pdf bib
Automatically Generating Term Frequency Induced Taxonomies
Karin Murthy | Tanveer A Faruquie | L Venkata Subramaniam | Hima Prasad K | Mukesh Mohania
Proceedings of the ACL 2010 Conference Short Papers