Naiming Liu


2023

pdf bib
CLASS: A Design Framework for Building Intelligent Tutoring Systems Based on Learning Science principles
Shashank Sonkar | Naiming Liu | Debshila Mallick | Richard Baraniuk
Findings of the Association for Computational Linguistics: EMNLP 2023

We present a design framework called Conversational Learning with Analytical Step-by-Step Strategies (CLASS) for building advanced Intelligent Tutoring Systems (ITS) powered by high-performance Large Language Models (LLMs). The CLASS framework empowers ITS with two key capabilities. First, through a carefully curated scaffolding dataset, CLASS equips ITS with essential problem-solving strategies, enabling it to provide tutor-like, step-by-step guidance to students. Second, by using a dynamic conversational dataset, CLASS assists ITS in facilitating natural language interactions, fostering engaging student-tutor conversations. The CLASS framework also provides valuable insights into ITS’s internal decision-making process which allows seamless integration of user feedback, thus enabling continuous refinement and improvement. We also present a proof-of-concept ITS, referred to as SPOCK, which is trained using the CLASS framework with a focus on introductory college level biology content. A carefully constructed protocol was developed for SPOCK’s preliminary evaluation, examining aspects such as the factual accuracy and relevance of its responses. Experts in the field of biology offered favorable remarks, particularly highlighting SPOCK’s capability to break down questions into manageable subproblems and provide encouraging responses to students.

2022

pdf bib
Open-ended Knowledge Tracing for Computer Science Education
Naiming Liu | Zichao Wang | Richard Baraniuk | Andrew Lan
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

In educational applications, knowledge tracing refers to the problem of estimating students’ time-varying concept/skill mastery level from their past responses to questions and predicting their future performance.One key limitation of most existing knowledge tracing methods is that they treat student responses to questions as binary-valued, i.e., whether they are correct or incorrect. Response correctness analysis/prediction is straightforward, but it ignores important information regarding mastery, especially for open-ended questions.In contrast, exact student responses can provide much more information.In this paper, we conduct the first exploration int open-ended knowledge tracing (OKT) by studying the new task of predicting students’ exact open-ended responses to questions.Our work is grounded in the domain of computer science education with programming questions. We develop an initial solution to the OKT problem, a student knowledge-guided code generation approach, that combines program synthesis methods using language models with student knowledge tracing methods. We also conduct a series of quantitative and qualitative experiments on a real-world student code dataset to validate and demonstrate the promise of OKT.