Natasha Jaques
2024
Moral Foundations of Large Language Models
Marwa Abdulhai
|
Gregory Serapio-García
|
Clement Crepy
|
Daria Valter
|
John Canny
|
Natasha Jaques
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Moral foundations theory (MFT) is a psychological assessment tool that decomposes human moral reasoning into five factors, including care/harm, liberty/oppression, and sanctity/degradation (Graham et al., 2009). People vary in the weight they place on these dimensions when making moral decisions, in part due to their cultural upbringing and political ideology. As large language models (LLMs) are trained on datasets collected from the internet, they may reflect the biases that are present in such corpora. This paper uses MFT as a lens to analyze whether popular LLMs have acquired a bias towards a particular set of moral values. We analyze known LLMs and find they exhibit particular moral foundations, and show how these relate to human moral foundations and political affiliations. We also measure the consistency of these biases, or whether they vary strongly depending on the context of how the model is prompted. Finally, we show that we can adversarially select prompts that encourage the moral to exhibit a particular set of moral foundations, and that this can affect the model’s behavior on downstream tasks. These findings help illustrate the potential risks and unintended consequences of LLMs assuming a particular moral stance.
2020
Human-centric dialog training via offline reinforcement learning
Natasha Jaques
|
Judy Hanwen Shen
|
Asma Ghandeharioun
|
Craig Ferguson
|
Agata Lapedriza
|
Noah Jones
|
Shixiang Gu
|
Rosalind Picard
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
How can we train a dialog model to produce better conversations by learning from human feedback, without the risk of humans teaching it harmful chat behaviors? We start by hosting models online, and gather human feedback from real-time, open-ended conversations, which we then use to train and improve the models using offline reinforcement learning (RL). We identify implicit conversational cues including language similarity, elicitation of laughter, sentiment, and more, which indicate positive human feedback, and embed these in multiple reward functions. A well-known challenge is that learning an RL policy in an offline setting usually fails due to the lack of ability to explore and the tendency to make over-optimistic estimates of future reward. These problems become even harder when using RL for language models, which can easily have a 20,000 action vocabulary and many possible reward functions. We solve the challenge by developing a novel class of offline RL algorithms. These algorithms use KL-control to penalize divergence from a pre-trained prior language model, and use a new strategy to make the algorithm pessimistic, instead of optimistic, in the face of uncertainty. We test the resulting dialog model with ratings from 80 users in an open-domain setting and find it achieves significant improvements over existing deep offline RL approaches. The novel offline RL method is viable for improving any existing generative dialog model using a static dataset of human feedback.
Search
Fix data
Co-authors
- Marwa Abdulhai 1
- John Canny 1
- Clement Crepy 1
- Craig Ferguson 1
- Asma Ghandeharioun 1
- show all...