We deal with the problem of Question Answering (QA) over a long document, which poses a challenge for modern Large Language Models (LLMs). Although LLMs can handle increasingly longer context windows, they struggle to effectively utilize the long content. To address this issue, we introduce the concept of a virtual document (VDoc). A VDoc is created by selecting chunks from the original document that are most likely to contain the information needed to answer the user’s question, while ensuring they fit within the LLM’s context window. We hypothesize that providing a short and focused VDoc to the LLM is more effective than filling the entire context window with less relevant information. Our experiments confirm this hypothesis and demonstrate that using VDocs improves results on the QA task.
A frequent pattern in customer care conversations is the agents responding with appropriate webpage URLs that address users’ needs. We study the task of predicting the documents that customer care agents can use to facilitate users’ needs. We also introduce a new public dataset which supports the aforementioned problem. Using this dataset and two others, we investigate state-of-the art deep learning (DL) and information retrieval (IR) models for the task. Additionally, we analyze the practicality of such systems in terms of inference time complexity. Our show that an hybrid IR+DL approach provides the best of both worlds.
Customer support agents play a crucial role as an interface between an organization and its end-users. We propose CAIRAA: Conversational Approach to Information Retrieval for Agent Assistance, to reduce the cognitive workload of support agents who engage with users through conversation systems. CAIRAA monitors an evolving conversation and recommends both responses and URLs of documents the agent can use in replies to their client. We combine traditional information retrieval (IR) approaches with more recent Deep Learning (DL) models to ensure high accuracy and efficient run-time performance in the deployed system. Here, we describe the CAIRAA system and demonstrate its effectiveness in a pilot study via a short video.