Navid Rekabsaz


2024

pdf bib
Effective Controllable Bias Mitigation for Classification and Retrieval using Gate Adapters
Shahed Masoudian | Cornelia Volaucnik | Markus Schedl | Navid Rekabsaz
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

Bias mitigation of Language Models has been the topic of many studies with a recent focus on learning separate modules like adapters for on-demand debiasing. Besides optimizing for a modularized debiased model, it is often critical in practice to control the degree of bias reduction at inference time, e.g., in order to tune for a desired performance-fairness trade-off in search results or to control the strength of debiasing in classification tasks. In this paper, we introduce Controllable Gate Adapter (ConGater), a novel modular gating mechanism with adjustable sensitivity parameters, %In addition to better perseverance of task performance and enhanced information removal, which allows for a gradual transition from the biased state of the model to the fully debiased version at inference time. We demonstrate ConGater performance by (1) conducting adversarial debiasing experiments with three different models on three classification tasks with four protected attributes, and (2) reducing the bias of search results through fairness list-wise regularization to enable adjusting a trade-off between performance and fairness metrics. Our experiments on the classification tasks show that compared to baselines of the same caliber, ConGater can maintain higher task performance while containing less information regarding the attributes. Our results on the retrieval task show that the fully debiased ConGater can achieve the same fairness performance while maintaining more than twice as high task performance than recent strong baselines. Overall, besides strong performance ConGater enables the continuous transitioning between biased and debiased states of models, enhancing personalization of use and interpretability through controllability.

pdf bib
Unlabeled Debiasing in Downstream Tasks via Class-wise Low Variance Regularization
Shahed Masoudian | Markus Frohmann | Navid Rekabsaz | Markus Schedl
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Language models frequently inherit societal biases from their training data. Numerous techniques have been proposed to mitigate these biases during both the pre-training and fine-tuning stages. However, fine-tuning a pre-trained debiased language model on a downstream task can reintroduce biases into the model. Additionally, existing debiasing methods for downstream tasks either (i) require labels of protected attributes (e.g., age, race, or political views) that are often not available or (ii) rely on indicators of bias, which restricts their applicability to gender debiasing since they rely on gender-specific words. To address this, we introduce a novel debiasing regularization technique based on the class-wise variance of embeddings. Crucially, our method does not require attribute labels and targets any attribute, thus addressing the shortcomings of existing debiasing methods. Our experiments on encoder language models and three datasets demonstrate that our method outperforms existing strong debiasing baselines that rely on target attribute labels while maintaining performance on the target task.

pdf bib
What the Weight?! A Unified Framework for Zero-Shot Knowledge Composition
Carolin Holtermann | Markus Frohmann | Navid Rekabsaz | Anne Lauscher
Findings of the Association for Computational Linguistics: EACL 2024

The knowledge encapsulated in a model is the core factor determining its final performance on downstream tasks. Much research in NLP has focused on efficient methods for storing and adapting different types of knowledge, e.g., in dedicated modularized structures, and on how to effectively combine these, e.g., by learning additional parameters. However, given the many possible options, a thorough understanding of the mechanisms involved in these compositions is missing, and hence it remains unclear which strategies to utilize. To address this research gap, we propose a novel framework for zero-shot module composition, which encompasses existing and some novel variations for selecting, weighting, and combining parameter modules under a single unified notion. Focusing on the scenario of domain knowledge and adapter layers, our framework provides a systematic unification of concepts, allowing us to conduct the first comprehensive benchmarking study of various zero-shot knowledge composition strategies. In particular, we test two module combination methods and five selection and weighting strategies for their effectiveness and efficiency in an extensive experimental setup. Our results highlight the efficacy of ensembling but also hint at the power of simple though often-ignored weighting methods. Further in-depth analyses allow us to understand the role of weighting vs. top-k selection, and show that, to a certain extent, the performance of adapter composition can even be predicted.

pdf bib
ScaLearn: Simple and Highly Parameter-Efficient Task Transfer by Learning to Scale
Markus Frohmann | Carolin Holtermann | Shahed Masoudian | Anne Lauscher | Navid Rekabsaz
Findings of the Association for Computational Linguistics: ACL 2024

Multi-task learning (MTL) has shown considerable practical benefits, particularly when using language models (LMs). While this is commonly achieved by learning tasks under a joint optimization procedure, some methods, such as AdapterFusion, divide the problem into two stages: (i) task learning, where knowledge specific to a task is encapsulated within sets of parameters (e.g., adapters), and (ii) transfer, where this already learned knowledge is leveraged for a target task. This separation of concerns provides numerous benefits (e.g., promoting reusability). However, current two stage MTL introduces a substantial number of additional parameters. We address this issue by leveraging the usefulness of linearly scaling the output representations of source adapters for transfer learning. We introduce ScaLearn, a simple and highly parameter-efficient two-stage MTL method that capitalizes on the knowledge of the source tasks by learning a minimal set of scaling parameters that enable effective transfer to a target task. Our experiments on three benchmarks (GLUE, SuperGLUE, and HumSet) and two encoder LMs show that ScaLearn consistently outperforms strong baselines with a small number of transfer parameters (~0.35% of those of AdapterFusion). Remarkably, we observe that ScaLearn maintains its strong abilities even when further reducing parameters, achieving competitive results with only 8 transfer parameters per target task. Our proposed approach thus demonstrates the power of simple scaling as a promise for more efficient task transfer. Our code is available at https://github.com/CPJKU/ScaLearn.

2023

pdf bib
Parameter-efficient Modularised Bias Mitigation via AdapterFusion
Deepak Kumar | Oleg Lesota | George Zerveas | Daniel Cohen | Carsten Eickhoff | Markus Schedl | Navid Rekabsaz
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Large pre-trained language models contain societal biases and carry along these biases to downstream tasks. Current in-processing bias mitigation approaches (like adversarial training) impose debiasing by updating a model’s parameters, effectively transferring the model to a new, irreversible debiased state. In this work, we propose a novel approach to develop stand-alone debiasing functionalities separate from the model, which can be integrated into the model on-demand, while keeping the core model untouched. Drawing from the concept of AdapterFusion in multi-task learning, we introduce DAM (Debiasing with Adapter Modules) – a debiasing approach to first encapsulate arbitrary bias mitigation functionalities into separate adapters, and then add them to the model on-demand in order to deliver fairness qualities. We conduct a large set of experiments on three classification tasks with gender, race, and age as protected attributes. Our results show that DAM improves or maintains the effectiveness of bias mitigation, avoids catastrophic forgetting in a multi-attribute scenario, and maintains on-par task performance, while granting parameter-efficiency and easy switching between the original and debiased models.

pdf bib
Enhancing the Ranking Context of Dense Retrieval through Reciprocal Nearest Neighbors
George Zerveas | Navid Rekabsaz | Carsten Eickhoff
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Sparse annotation poses persistent challenges to training dense retrieval models; for example, it distorts the training signal when unlabeled relevant documents are used spuriously as negatives in contrastive learning. To alleviate this problem, we introduce evidence-based label smoothing, a novel, computationally efficient method that prevents penalizing the model for assigning high relevance to false negatives. To compute the target relevance distribution over candidate documents within the ranking context of a given query, we assign a non-zero relevance probability to those candidates most similar to the ground truth based on the degree of their similarity to the ground-truth document(s). To estimate relevance we leverage an improved similarity metric based on reciprocal nearest neighbors, which can also be used independently to rerank candidates in post-processing. Through extensive experiments on two large-scale ad hoc text retrieval datasets, we demonstrate that reciprocal nearest neighbors can improve the ranking effectiveness of dense retrieval models, both when used for label smoothing, as well as for reranking. This indicates that by considering relationships between documents and queries beyond simple geometric distance we can effectively enhance the ranking context.

pdf bib
Modular and On-demand Bias Mitigation with Attribute-Removal Subnetworks
Lukas Hauzenberger | Shahed Masoudian | Deepak Kumar | Markus Schedl | Navid Rekabsaz
Findings of the Association for Computational Linguistics: ACL 2023

Societal biases are reflected in large pre-trained language models and their fine-tuned versions on downstream tasks. Common in-processing bias mitigation approaches, such as adversarial training and mutual information removal, introduce additional optimization criteria, and update the model to reach a new debiased state. However, in practice, end-users and practitioners might prefer to switch back to the original model, or apply debiasing only on a specific subset of protected attributes. To enable this, we propose a novel modular bias mitigation approach, consisting of stand-alone highly sparse debiasing subnetworks, where each debiasing module can be integrated into the core model on-demand at inference time. Our approach draws from the concept of diff pruning, and proposes a novel training regime adaptable to various representation disentanglement optimizations. We conduct experiments on three classification tasks with gender, race, and age as protected attributes. The results show that our modular approach, while maintaining task performance, improves (or at least remains on-par with) the effectiveness of bias mitigation in comparison with baseline finetuning. Particularly on a two-attribute dataset, our approach with separately learned debiasing subnetworks shows effective utilization of either or both the subnetworks for selective bias mitigation.

2022

pdf bib
CODER: An efficient framework for improving retrieval through COntextual Document Embedding Reranking
George Zerveas | Navid Rekabsaz | Daniel Cohen | Carsten Eickhoff
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Contrastive learning has been the dominant approach to training dense retrieval models. In this work, we investigate the impact of ranking context - an often overlooked aspect of learning dense retrieval models. In particular, we examine the effect of its constituent parts: jointly scoring a large number of negatives per query, using retrieved (query-specific) instead of random negatives, and a fully list-wise loss.To incorporate these factors into training, we introduce Contextual Document Embedding Reranking (CODER), a highly efficient retrieval framework. When reranking, it incurs only a negligible computational overhead on top of a first-stage method at run time (approx. 5 ms delay per query), allowing it to be easily combined with any state-of-the-art dual encoder method. Models trained through CODER can also be used as stand-alone retrievers.Evaluating CODER in a large set of experiments on the MS MARCO and TripClick collections, we show that the contextual reranking of precomputed document embeddings leads to a significant improvement in retrieval performance. This improvement becomes even more pronounced when more relevance information per query is available, shown in the TripClick collection, where we establish new state-of-the-art results by a large margin.

pdf bib
HumSet: Dataset of Multilingual Information Extraction and Classification for Humanitarian Crises Response
Selim Fekih | Nicolo’ Tamagnone | Benjamin Minixhofer | Ranjan Shrestha | Ximena Contla | Ewan Oglethorpe | Navid Rekabsaz
Findings of the Association for Computational Linguistics: EMNLP 2022

Timely and effective response to humanitarian crises requires quick and accurate analysis of large amounts of text data – a process that can highly benefit from expert-assisted NLP systems trained on validated and annotated data in the humanitarian response domain. To enable creation of such NLP systems, we introduce and release HumSet, a novel and rich multilingual dataset of humanitarian response documents annotated by experts in the humanitarian response community. The dataset provides documents in three languages (English, French, Spanish) and covers a variety of humanitarian crises from 2018 to 2021 across the globe. For each document, HUMSET provides selected snippets (entries) as well as assigned classes to each entry annotated using common humanitarian information analysis frameworks. HUMSET also provides novel and challenging entry extraction and multi-label entry classification tasks. In this paper, we take a first step towards approaching these tasks and conduct a set of experiments on Pre-trained Language Models (PLM) to establish strong baselines for future research in this domain. The dataset is available at https://blog.thedeep.io/humset/.

pdf bib
WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models
Benjamin Minixhofer | Fabian Paischer | Navid Rekabsaz
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Large pretrained language models (LMs) have become the central building block of many NLP applications. Training these models requires ever more computational resources and most of the existing models are trained on English text only. It is exceedingly expensive to train these models in other languages. To alleviate this problem, we introduce a novel method – called WECHSEL – to efficiently and effectively transfer pretrained LMs to new languages. WECHSEL can be applied to any model which uses subword-based tokenization and learns an embedding for each subword. The tokenizer of the source model (in English) is replaced with a tokenizer in the target language and token embeddings are initialized such that they are semantically similar to the English tokens by utilizing multilingual static word embeddings covering English and the target language. We use WECHSEL to transfer the English RoBERTa and GPT-2 models to four languages (French, German, Chinese and Swahili). We also study the benefits of our method on very low-resource languages. WECHSEL improves over proposed methods for cross-lingual parameter transfer and outperforms models of comparable size trained from scratch with up to 64x less training effort. Our method makes training large language models for new languages more accessible and less damaging to the environment. We make our code and models publicly available.

2021

pdf bib
MultiHumES: Multilingual Humanitarian Dataset for Extractive Summarization
Jenny Paola Yela-Bello | Ewan Oglethorpe | Navid Rekabsaz
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

When responding to a disaster, humanitarian experts must rapidly process large amounts of secondary data sources to derive situational awareness and guide decision-making. While these documents contain valuable information, manually processing them is extremely time-consuming when an expedient response is necessary. To improve this process, effective summarization models are a valuable tool for humanitarian response experts as they provide digestible overviews of essential information in secondary data. This paper focuses on extractive summarization for the humanitarian response domain and describes and makes public a new multilingual data collection for this purpose. The collection – called MultiHumES– provides multilingual documents coupled with informative snippets that have been annotated by humanitarian analysts over the past four years. We report the performance results of a recent neural networks-based summarization model together with other baselines. We hope that the released data collection can further grow the research on multilingual extractive summarization in the humanitarian response domain.

2017

pdf bib
Volatility Prediction using Financial Disclosures Sentiments with Word Embedding-based IR Models
Navid Rekabsaz | Mihai Lupu | Artem Baklanov | Alexander Dür | Linda Andersson | Allan Hanbury
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Volatility prediction—an essential concept in financial markets—has recently been addressed using sentiment analysis methods. We investigate the sentiment of annual disclosures of companies in stock markets to forecast volatility. We specifically explore the use of recent Information Retrieval (IR) term weighting models that are effectively extended by related terms using word embeddings. In parallel to textual information, factual market data have been widely used as the mainstream approach to forecast market risk. We therefore study different fusion methods to combine text and market data resources. Our word embedding-based approach significantly outperforms state-of-the-art methods. In addition, we investigate the characteristics of the reports of the companies in different financial sectors.

2016

pdf bib
Standard Test Collection for English-Persian Cross-Lingual Word Sense Disambiguation
Navid Rekabsaz | Serwah Sabetghadam | Mihai Lupu | Linda Andersson | Allan Hanbury
Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)

In this paper, we address the shortage of evaluation benchmarks on Persian (Farsi) language by creating and making available a new benchmark for English to Persian Cross Lingual Word Sense Disambiguation (CL-WSD). In creating the benchmark, we follow the format of the SemEval 2013 CL-WSD task, such that the introduced tools of the task can also be applied on the benchmark. In fact, the new benchmark extends the SemEval-2013 CL-WSD task to Persian language.