Nilesh Jain


2024

pdf bib
SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models
Juan Pablo Munoz | Jinjie Yuan | Nilesh Jain
Findings of the Association for Computational Linguistics: EMNLP 2024

Large pre-trained models (LPMs), such as large language models, have become ubiquitous and are employed in many applications. These models are often adapted to a desired domain or downstream task through a fine-tuning stage. This paper proposes SQFT, an end-to-end solution for low-precision sparse parameter-efficient fine-tuning of LPMs, allowing for effective model manipulation in resource-constrained environments. Additionally, an innovative strategy enables the merging of sparse weights with low-rank adapters without losing sparsity and accuracy, overcoming the limitations of previous approaches. SQFT also addresses the challenge of having quantized weights and adapters with different numerical precisions, enabling merging in the desired numerical format without sacrificing accuracy. Multiple adaptation scenarios, models, and comprehensive sparsity levels demonstrate the effectiveness of SQFT.

pdf bib
Shears: Unstructured Sparsity with Neural Low-rank Adapter Search
J. Pablo Muñoz | Jinjie Yuan | Nilesh Jain
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 6: Industry Track)

Recently, several approaches successfully demonstrated that weight-sharing Neural Architecture Search (NAS) can effectively explore a search space of elastic low-rank adapters (LoRA), allowing the parameter-efficient fine-tuning (PEFT) and compression of large language models. In this paper, we introduce a novel approach called Shears, demonstrating how the integration of cost-effective sparsity and a proposed Neural Low-rank adapter Search (NLS) algorithm can further improve the efficiency of PEFT approaches. Results demonstrate the benefits of Shears compared to other methods, reaching high sparsity levels while improving or with little drop in accuracy, utilizing a single GPU for a pair of hours.

pdf bib
EFTNAS: Searching for Efficient Language Models in First-Order Weight-Reordered Super-Networks
Juan Pablo Munoz | Yi Zheng | Nilesh Jain
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Transformer-based models have demonstrated outstanding performance in natural language processing (NLP) tasks and many other domains, e.g., computer vision. Depending on the size of these models, which have grown exponentially in the past few years, machine learning practitioners might be restricted from deploying them in resource-constrained environments. This paper discusses the compression of transformer-based models for multiple resource budgets. Integrating neural architecture search (NAS) and network pruning techniques, we effectively generate and train weight-sharing super-networks that contain efficient, high-performing, and compressed transformer-based models. A common challenge in NAS is the design of the search space, for which we propose a method to automatically obtain the boundaries of the search space and then derive the rest of the intermediate possible architectures using a first-order weight importance technique. The proposed end-to-end NAS solution, EFTNAS, discovers efficient subnetworks that have been compressed and fine-tuned for downstream NLP tasks. We demonstrate EFTNAS on the General Language Understanding Evaluation (GLUE) benchmark and the Stanford Question Answering Dataset (SQuAD), obtaining high-performing smaller models with a reduction of more than 5x in size without or with little degradation in performance.

pdf bib
LoNAS: Elastic Low-Rank Adapters for Efficient Large Language Models
Juan Pablo Munoz | Jinjie Yuan | Yi Zheng | Nilesh Jain
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Large Language Models (LLMs) continue to grow, reaching hundreds of billions of parameters and making it challenging for Deep Learning practitioners with resource-constrained systems to use them, e.g., fine-tuning these models for a downstream task of their interest. Adapters, such as low-rank adapters (LoRA), have been proposed to reduce the number of trainable parameters in a model, reducing memory requirements and enabling smaller systems to fine-tune these models. Orthogonal to this work, Neural Architecture Search (NAS) has been used to discover compressed and more efficient architectures without sacrificing performance compared to similar base models. This paper introduces a novel approach, LoNAS, to use NAS on language models by exploring a search space of elastic low-rank adapters while reducing memory and compute requirements of full-scale NAS, resulting in high-performing compressed models obtained from weight-sharing super-networks. Compared to models fine-tuned with LoRA, these models contain fewer total parameters, reducing the inference time with only minor decreases in accuracy and, in some cases, even improving accuracy. We discuss the limitations of LoNAS and share observations for the research community regarding its generalization capabilities, which have motivated our follow-up work.