Pedram Hosseini


2022

pdf bib
GisPy: A Tool for Measuring Gist Inference Score in Text
Pedram Hosseini | Christopher Wolfe | Mona Diab | David Broniatowski
Proceedings of the 4th Workshop of Narrative Understanding (WNU2022)

Decision making theories such as Fuzzy-Trace Theory (FTT) suggest that individuals tend to rely on gist, or bottom-line meaning, in the text when making decisions. In this work, we delineate the process of developing GisPy, an opensource tool in Python for measuring the Gist Inference Score (GIS) in text. Evaluation of GisPy on documents in three benchmarks from the news and scientific text domains demonstrates that scores generated by our tool significantly distinguish low vs. high gist documents. Our tool is publicly available to use at: https: //github.com/phosseini/GisPy.

pdf bib
Knowledge-Augmented Language Models for Cause-Effect Relation Classification
Pedram Hosseini | David A. Broniatowski | Mona Diab
Proceedings of the First Workshop on Commonsense Representation and Reasoning (CSRR 2022)

Previous studies have shown the efficacy of knowledge augmentation methods in pretrained language models. However, these methods behave differently across domains and downstream tasks. In this work, we investigate the augmentation of pretrained language models with knowledge graph data in the cause-effect relation classification and commonsense causal reasoning tasks. After automatically verbalizing triples in ATOMIC2020, a wide coverage commonsense reasoning knowledge graph, we continually pretrain BERT and evaluate the resulting model on cause-effect pair classification and answering commonsense causal reasoning questions. Our results show that a continually pretrained language model augmented with commonsense reasoning knowledge outperforms our baselines on two commonsense causal reasoning benchmarks, COPA and BCOPA-CE, and a Temporal and Causal Reasoning (TCR) dataset, without additional improvement in model architecture or using quality-enhanced data for fine-tuning.

2021

pdf bib
ParsiNLU: A Suite of Language Understanding Challenges for Persian
Daniel Khashabi | Arman Cohan | Siamak Shakeri | Pedram Hosseini | Pouya Pezeshkpour | Malihe Alikhani | Moin Aminnaseri | Marzieh Bitaab | Faeze Brahman | Sarik Ghazarian | Mozhdeh Gheini | Arman Kabiri | Rabeeh Karimi Mahabagdi | Omid Memarrast | Ahmadreza Mosallanezhad | Erfan Noury | Shahab Raji | Mohammad Sadegh Rasooli | Sepideh Sadeghi | Erfan Sadeqi Azer | Niloofar Safi Samghabadi | Mahsa Shafaei | Saber Sheybani | Ali Tazarv | Yadollah Yaghoobzadeh
Transactions of the Association for Computational Linguistics, Volume 9

Despite the progress made in recent years in addressing natural language understanding (NLU) challenges, the majority of this progress remains to be concentrated on resource-rich languages like English. This work focuses on Persian language, one of the widely spoken languages in the world, and yet there are few NLU datasets available for this language. The availability of high-quality evaluation datasets is a necessity for reliable assessment of the progress on different NLU tasks and domains. We introduce ParsiNLU, the first benchmark in Persian language that includes a range of language understanding tasks—reading comprehension, textual entailment, and so on. These datasets are collected in a multitude of ways, often involving manual annotations by native speakers. This results in over 14.5k new instances across 6 distinct NLU tasks. Additionally, we present the first results on state-of-the-art monolingual and multilingual pre-trained language models on this benchmark and compare them with human performance, which provides valuable insights into our ability to tackle natural language understanding challenges in Persian. We hope ParsiNLU fosters further research and advances in Persian language understanding.1

2020

pdf bib
A Multi-Modal Method for Satire Detection using Textual and Visual Cues
Lily Li | Or Levi | Pedram Hosseini | David Broniatowski
Proceedings of the 3rd NLP4IF Workshop on NLP for Internet Freedom: Censorship, Disinformation, and Propaganda

Satire is a form of humorous critique, but it is sometimes misinterpreted by readers as legitimate news, which can lead to harmful consequences. We observe that the images used in satirical news articles often contain absurd or ridiculous content and that image manipulation is used to create fictional scenarios. While previous work have studied text-based methods, in this work we propose a multi-modal approach based on state-of-the-art visiolinguistic model ViLBERT. To this end, we create a new dataset consisting of images and headlines of regular and satirical news for the task of satire detection. We fine-tune ViLBERT on the dataset and train a convolutional neural network that uses an image forensics technique. Evaluation on the dataset shows that our proposed multi-modal approach outperforms image-only, text-only, and simple fusion baselines.

pdf bib
Content analysis of Persian/Farsi Tweets during COVID-19 pandemic in Iran using NLP
Pedram Hosseini | Poorya Hosseini | David Broniatowski
Proceedings of the 1st Workshop on NLP for COVID-19 (Part 2) at EMNLP 2020

Iran, along with China, South Korea, and Italy was among the countries that were hit hard in the first wave of the COVID-19 spread. Twitter is one of the widely-used online platforms by Iranians inside and abroad for sharing their opinion, thoughts, and feelings about a wide range of issues. In this study, using more than 530,000 original tweets in Persian/Farsi on COVID-19, we analyzed the topics discussed among users, who are mainly Iranians, to gauge and track the response to the pandemic and how it evolved over time. We applied a combination of manual annotation of a random sample of tweets and topic modeling tools to classify the contents and frequency of each category of topics. We identified the top 25 topics among which living experience under home quarantine emerged as a major talking point. We additionally categorized the broader content of tweets that shows satire, followed by news, is the dominant tweet type among Iranian users. While this framework and methodology can be used to track public response to ongoing developments related to COVID-19, a generalization of this framework can become a useful framework to gauge Iranian public reaction to ongoing policy measures or events locally and internationally.

2019

pdf bib
Identifying Nuances in Fake News vs. Satire: Using Semantic and Linguistic Cues
Or Levi | Pedram Hosseini | Mona Diab | David Broniatowski
Proceedings of the Second Workshop on Natural Language Processing for Internet Freedom: Censorship, Disinformation, and Propaganda

The blurry line between nefarious fake news and protected-speech satire has been a notorious struggle for social media platforms. Further to the efforts of reducing exposure to misinformation on social media, purveyors of fake news have begun to masquerade as satire sites to avoid being demoted. In this work, we address the challenge of automatically classifying fake news versus satire. Previous work have studied whether fake news and satire can be distinguished based on language differences. Contrary to fake news, satire stories are usually humorous and carry some political or social message. We hypothesize that these nuances could be identified using semantic and linguistic cues. Consequently, we train a machine learning method using semantic representation, with a state-of-the-art contextual language model, and with linguistic features based on textual coherence metrics. Empirical evaluation attests to the merits of our approach compared to the language-based baseline and sheds light on the nuances between fake news and satire. As avenues for future work, we consider studying additional linguistic features related to the humor aspect, and enriching the data with current news events, to help identify a political or social message.