Pengfei He


2024

pdf bib
Towards Understanding Jailbreak Attacks in LLMs: A Representation Space Analysis
Yuping Lin | Pengfei He | Han Xu | Yue Xing | Makoto Yamada | Hui Liu | Jiliang Tang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Large language models (LLMs) are susceptible to a type of attack known as jailbreaking, which misleads LLMs to output harmful contents. Although there are diverse jailbreak attack strategies, there is no unified understanding on why some methods succeed and others fail. This paper explores the behavior of harmful and harmless prompts in the LLM’s representation space to investigate the intrinsic properties of successful jailbreak attacks. We hypothesize that successful attacks share some similar properties: They are effective in moving the representation of the harmful prompt towards the direction to the harmless prompts. We leverage hidden representations into the objective of existing jailbreak attacks to move the attacks along the acceptance direction, and conduct experiments to validate the above hypothesis using the proposed objective. We hope this study provides new insights into understanding how LLMs understand harmfulness information.

pdf bib
The Good and The Bad: Exploring Privacy Issues in Retrieval-Augmented Generation (RAG)
Shenglai Zeng | Jiankun Zhang | Pengfei He | Yiding Liu | Yue Xing | Han Xu | Jie Ren | Yi Chang | Shuaiqiang Wang | Dawei Yin | Jiliang Tang
Findings of the Association for Computational Linguistics: ACL 2024

Retrieval-augmented generation (RAG) is a powerful technique to facilitate language model generation with proprietary and private data, where data privacy is a pivotal concern. Whereas extensive research has demonstrated the privacy risks of large language models (LLMs), the RAG technique could potentially reshape the inherent behaviors of LLM generation, posing new privacy issues that are currently under-explored. To this end, we conduct extensive empirical studies with novel attack methods, which demonstrate the vulnerability of RAG systems on leaking the private retrieval database. Despite the new risks brought by RAG on the retrieval data, we further discover that RAG can be used to mitigate the old risks, i.e., the leakage of the LLMs’ training data. In general, we reveal many new insights in this paper for privacy protection of retrieval-augmented LLMs, which could benefit both LLMs and RAG systems builders.

pdf bib
On the Generalization of Training-based ChatGPT Detection Methods
Han Xu | Jie Ren | Pengfei He | Shenglai Zeng | Yingqian Cui | Amy Liu | Hui Liu | Jiliang Tang
Findings of the Association for Computational Linguistics: EMNLP 2024

Large language models, such as ChatGPT, achieve amazing performance on various language processing tasks. However, they can also be exploited for improper purposes such as plagiarism or misinformation dissemination. Thus, there is an urgent need to detect the texts generated by LLMs. One type of most studied methods trains classification models to distinguish LLM texts from human texts. However, existing studies demonstrate the trained models may suffer from distribution shifts (during test), i.e., they are ineffective to predict the generated texts from unseen language tasks or topics which are not collected during training. In this work, we focus on ChatGPT as a representative model, and we conduct a comprehensive investigation on these methods’ generalization behaviors under distribution shift caused by a wide range of factors, including prompts, text lengths, topics, and language tasks. To achieve this goal, we first collect a new dataset with human and ChatGPT texts, and then we conduct extensive studies on the collected dataset. Our studies unveil insightful findings that provide guidance for future methodologies and data collection strategies for LLM detection.

pdf bib
Exploring Memorization in Fine-tuned Language Models
Shenglai Zeng | Yaxin Li | Jie Ren | Yiding Liu | Han Xu | Pengfei He | Yue Xing | Shuaiqiang Wang | Jiliang Tang | Dawei Yin
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models (LLMs) have shown great capabilities in various tasks but also exhibited memorization of training data, raising tremendous privacy and copyright concerns. While prior works have studied memorization during pre-training, the exploration of memorization during fine-tuning is rather limited. Compared to pre-training, fine-tuning typically involves more sensitive data and diverse objectives, thus may bring distinct privacy risks and unique memorization behaviors. In this work, we conduct the first comprehensive analysis to explore language models’ (LMs) memorization during fine-tuning across tasks. Our studies with open-sourced and our own fine-tuned LMs across various tasks indicate that memorization presents a strong disparity among different fine-tuning tasks. We provide an intuitive explanation of this task disparity via sparse coding theory and unveil a strong correlation between memorization and attention score distribution.

2022

pdf bib
Rainier: Reinforced Knowledge Introspector for Commonsense Question Answering
Jiacheng Liu | Skyler Hallinan | Ximing Lu | Pengfei He | Sean Welleck | Hannaneh Hajishirzi | Yejin Choi
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Knowledge underpins reasoning. Recent research demonstrates that when relevant knowledge is provided as additional context to commonsense question answering (QA), it can substantially enhance the performance even on top of state-of-the-art. The fundamental challenge is where and how to find such knowledge that is high quality and on point with respect to the question; knowledge retrieved from knowledge bases are incomplete and knowledge generated from language models are inconsistent.We present Rainier, or Reinforced Knowledge Introspector, that learns to generate contextually relevant knowledge in response to given questions. Our approach starts by imitating knowledge generated by GPT-3, then learns to generate its own knowledge via reinforcement learning where rewards are shaped based on the increased performance on the resulting question answering. Rainier demonstrates substantial and consistent performance gains when tested over 9 different commonsense benchmarks: including 5 datasets that are seen during model training, as well as 4 datasets that are kept unseen. Our work is the first to report that knowledge generated by models that are orders of magnitude smaller than GPT-3, even without direct supervision on the knowledge itself, can exceed the quality of commonsense knowledge elicited from GPT-3.