Pierre Chambon


2024

pdf bib
RadGraph-XL: A Large-Scale Expert-Annotated Dataset for Entity and Relation Extraction from Radiology Reports
Jean-Benoit Delbrouck | Pierre Chambon | Zhihong Chen | Maya Varma | Andrew Johnston | Louis Blankemeier | Dave Van Veen | Tan Bui | Steven Truong | Curtis Langlotz
Findings of the Association for Computational Linguistics: ACL 2024

In order to enable extraction of structured clinical data from unstructured radiology reports, we introduce RadGraph-XL, a large-scale, expert-annotated dataset for clinical entity and relation extraction. RadGraph-XL consists of 2,300 radiology reports, which are annotated with over 410,000 entities and relations by board-certified radiologists. Whereas previous approaches focus solely on chest X-rays, RadGraph-XL includes data from four anatomy-modality pairs - chest CT, abdomen/pelvis CT, brain MR, and chest X-rays. Then, in order to automate structured information extraction, we use RadGraph-XL to train transformer-based models for clinical entity and relation extraction. Our evaluations include comprehensive ablation studies as well as an expert reader study that evaluates trained models on out-of-domain data. Results demonstrate that our model surpasses the performance of previous methods by up to 52% and notably outperforms GPT-4 in this domain. We release RadGraph-XL as well as our trained model to foster further innovation and research in structured clinical information extraction.

2023

pdf bib
Overview of the RadSum23 Shared Task on Multi-modal and Multi-anatomical Radiology Report Summarization
Jean-Benoit Delbrouck | Maya Varma | Pierre Chambon | Curtis Langlotz
The 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks

Radiology report summarization is a growing area of research. Given the Findings and/or Background sections of a radiology report, the goal is to generate a summary (called an Impression section) that highlights the key observations and conclusions of the radiology study. Recent efforts have released systems that achieve promising performance as measured by widely used summarization metrics such as BLEU and ROUGE. However, the research area of radiology report summarization currently faces two important limitations. First, most of the results are reported on private datasets. This limitation prevents the ability to reproduce results and fairly compare different systems and solutions. Secondly, to the best of our knowledge, most research is carried out on chest X-rays. To palliate these two limitations, we propose a radiology report summarization (RadSum) challenge on i) a new dataset of eleven different modalities and anatomies pairs based on the MIMIC-III database ii) a multimodal report summarization dataset based on MIMIC-CXR enhanced with a brand-new test-set from Stanford Hospital. In total, we received 112 submissions across 11 teams.

2022

pdf bib
ViLMedic: a framework for research at the intersection of vision and language in medical AI
Jean-benoit Delbrouck | Khaled Saab | Maya Varma | Sabri Eyuboglu | Pierre Chambon | Jared Dunnmon | Juan Zambrano | Akshay Chaudhari | Curtis Langlotz
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

There is a growing need to model interactions between data modalities (e.g., vision, language) — both to improve AI predictions on existing tasks and to enable new applications. In the recent field of multimodal medical AI, integrating multiple modalities has gained widespread popularity as multimodal models have proven to improve performance, robustness, require less training samples and add complementary information. To improve technical reproducibility and transparency for multimodal medical tasks as well as speed up progress across medical AI, we present ViLMedic, a Vision-and-Language medical library. As of 2022, the library contains a dozen reference implementations replicating the state-of-the-art results for problems that range from medical visual question answering and radiology report generation to multimodal representation learning on widely adopted medical datasets. In addition, ViLMedic hosts a model-zoo with more than twenty pretrained models for the above tasks designed to be extensible by researchers but also simple for practitioners. Ultimately, we hope our reproducible pipelines can enable clinical translation and create real impact. The library is available at https://github.com/jbdel/vilmedic.

pdf bib
Improving the Factual Correctness of Radiology Report Generation with Semantic Rewards
Jean-Benoit Delbrouck | Pierre Chambon | Christian Bluethgen | Emily Tsai | Omar Almusa | Curtis Langlotz
Findings of the Association for Computational Linguistics: EMNLP 2022

Neural image-to-text radiology report generation systems offer the potential to improve radiology reporting by reducing the repetitive process of report drafting and identifying possible medical errors. These systems have achieved promising performance as measured by widely used NLG metrics such as BLEU and CIDEr. However, the current systems face important limitations. First, they present an increased complexity in architecture that offers only marginal improvements on NLG metrics. Secondly, these systems that achieve high performance on these metrics are not always factually complete or consistent due to both inadequate training and evaluation. Recent studies have shown the systems can be substantially improved by using new methods encouraging 1) the generation of domain entities consistent with the reference and 2) describing these entities in inferentially consistent ways. So far, these methods rely on weakly-supervised approaches (rule-based) and named entity recognition systems that are not specific to the chest X-ray domain. To overcome this limitation, we propose a new method, the RadGraph reward, to further improve the factual completeness and correctness of generated radiology reports. More precisely, we leverage the RadGraph dataset containing annotated chest X-ray reports with entities and relations between entities. On two open radiology report datasets, our system substantially improves the scores up to 14.2% and 25.3% on metrics evaluating the factual correctness and completeness of reports.