When parallel corpora are preprocessed for machine translation (MT) training, a part of the parallel data is commonly discarded and deemed non-parallel due to odd-length ratio, overlapping text in source and target sentences or failing some other form of a semantic equivalency test. For language pairs with limited parallel resources, this can be costly as in such cases modest amounts of acceptable data may be useful to help build MT systems that generate higher quality translations. In this paper, we refine parallel corpora for two language pairs, English–Bengali and English–Icelandic, by extracting sub-sentence fragments from sentence pairs that would otherwise have been discarded, in order to increase recall when compiling training data. We find that by including the fragments, translation quality of NMT systems trained on the data improves significantly when translating from English to Bengali and from English to Icelandic.
Building Machine Translation systems for a specific domain requires a sufficiently large and good quality parallel corpus in that domain. However, this is a bit challenging task due to the lack of parallel data in many domains such as economics, science and technology, sports etc. In this work, we build English-to-French translation systems for software product descriptions scraped from LinkedIn website. Moreover, we developed a first-ever test parallel data set of product descriptions. We conduct experiments by building a baseline translation system trained on general domain and then domain-adapted systems using sentence-embedding based corpus filtering and domain-specific sub-corpora extraction. All the systems are tested on our newly developed data set mentioned earlier. Our experimental evaluation reveals that the domain-adapted model based on our proposed approaches outperforms the baseline.
It is often a challenging task to build Machine Translation (MT) engines for a specific domain due to the lack of parallel data in that area. In this project, we develop a range of MT systems for 6 European languages (English, German, Italian, French, Polish and Irish) in all directions and in two domains (environment and economics).
Sarcasm is extensively used in User Generated Content (UGC) in order to express one’s discontent, especially through blogs, forums, or social media such as Twitter. Several works have attempted to detect and analyse sarcasm in UGC. However, the lack of freely available corpora in this field makes the task even more difficult. In this work, we present “TransCasm” corpus, a parallel corpus of sarcastic tweets translated from English into French along with their non-sarcastic representations. To build the bilingual corpus of sarcasm, we select the “SIGN” corpus, a monolingual data set of sarcastic tweets and their non-sarcastic interpretations, created by (Peled and Reichart, 2017). We propose to define linguistic guidelines for developing “TransCasm” which is the first ever bilingual corpus of sarcastic tweets. In addition, we utilise “TransCasm” for building a binary sarcasm classifier in order to identify whether a tweet is sarcastic or not. Our experiment reveals that the sarcasm classifier achieves 61% accuracy on detecting sarcasm in tweets. “TransCasm” is now freely available online and is ready to be explored for further research.
Parallel sentences extracted from comparable corpora can be useful to supplement parallel corpora when training machine translation (MT) systems. This is even more prominent in low-resource scenarios, where parallel corpora are scarce. In this paper, we present a system which uses three very different measures to identify and score parallel sentences from comparable corpora. We measure the accuracy of our methods in low-resource settings by comparing the results against manually curated test data for English–Icelandic, and by evaluating an MT system trained on the concatenation of the parallel data extracted by our approach and an existing data set. We show that the system is capable of extracting useful parallel sentences with high accuracy, and that the extracted pairs substantially increase translation quality of an MT system trained on the data, as measured by automatic evaluation metrics.
This paper reports the results of the first experiment dealing with the challenges of building a machine translation system for user-generated content involving a complex South Slavic language. We focus on translation of English IMDb user movie reviews into Serbian, in a low-resource scenario. We explore potentials and limits of (i) phrase-based and neural machine translation systems trained on out-of-domain clean parallel data from news articles (ii) creating additional synthetic in-domain parallel corpus by machine-translating the English IMDb corpus into Serbian. Our main findings are that morphology and syntax are better handled by the neural approach than by the phrase-based approach even in this low-resource mismatched domain scenario, however the situation is different for the lexical aspect, especially for person names. This finding also indicates that in general, machine translation of person names into Slavic languages (especially those which require/allow transcription) should be investigated more systematically.
In this age of the digital economy, promoting organisations attempt their best to engage the customers in the feedback provisioning process. With the assistance of customer insights, an organisation can develop a better product and provide a better service to its customer. In this paper, we analyse the real world samples of customer feedback from Microsoft Office customers in four languages, i.e., English, French, Spanish and Japanese and conclude a five-plus-one-classes categorisation (comment, request, bug, complaint, meaningless and undetermined) for meaning classification. The task is to %access multilingual corpora annotated by the proposed meaning categorization scheme and develop a system to determine what class(es) the customer feedback sentences should be annotated as in four languages. We propose following approaches to accomplish this task: (i) a multinomial naive bayes (MNB) approach for multi-label classification, (ii) MNB with one-vs-rest classifier approach, and (iii) the combination of the multilabel classification-based and the sentiment classification-based approach. Our best system produces F-scores of 0.67, 0.83, 0.72 and 0.7 for English, Spanish, French and Japanese, respectively. The results are competitive to the best ones for all languages and secure 3rd and 5th position for Japanese and French, respectively, among all submitted systems.
In this paper we study the impact of using images to machine-translate user-generated e-commerce product listings. We study how a multi-modal Neural Machine Translation (NMT) model compares to two text-only approaches: a conventional state-of-the-art attentional NMT and a Statistical Machine Translation (SMT) model. User-generated product listings often do not constitute grammatical or well-formed sentences. More often than not, they consist of the juxtaposition of short phrases or keywords. We train our models end-to-end as well as use text-only and multi-modal NMT models for re-ranking n-best lists generated by an SMT model. We qualitatively evaluate our user-generated training data also analyse how adding synthetic data impacts the results. We evaluate our models quantitatively using BLEU and TER and find that (i) additional synthetic data has a general positive impact on text-only and multi-modal NMT models, and that (ii) using a multi-modal NMT model for re-ranking n-best lists improves TER significantly across different n-best list sizes.
Integrating Natural Language Processing (NLP) and computer vision is a promising effort. However, the applicability of these methods directly depends on the availability of a specific multimodal data that includes images and texts. In this paper, we present a collection of a Multimodal corpus of comparable texts and their images in 9 languages from the web news articles of Euronews website. This corpus has found widespread use in the NLP community in Multilingual and multimodal tasks. Here, we focus on its acquisition of the images and text data and their multilingual alignment.