2024
pdf
bib
abs
Enhancing Post-Hoc Attributions in Long Document Comprehension via Coarse Grained Answer Decomposition
Pritika Ramu
|
Koustava Goswami
|
Apoorv Saxena
|
Balaji Vasan Srinivasan
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Accurately attributing answer text to its source document is crucial for developing a reliable question-answering system. However, attribution for long documents remains largely unexplored. Post-hoc attribution systems are designed to map answer text back to the source document, yet the granularity of this mapping has not been addressed. Furthermore, a critical question arises: What exactly should be attributed? This involves identifying the specific information units within an answer that require grounding. In this paper, we propose and investigate a novel approach to the factual decomposition of generated answers for attribution, employing template-based in-context learning. To accomplish this, we utilize the question and integrate negative sampling during few-shot in-context learning for decomposition. This approach enhances the semantic understanding of both abstractive and extractive answers. We examine the impact of answer decomposition by providing a thorough examination of various attribution approaches, ranging from retrieval-based techniques to LLM-based attributors.
pdf
bib
abs
Is This a Bad Table? A Closer Look at the Evaluation of Table Generation from Text
Pritika Ramu
|
Aparna Garimella
|
Sambaran Bandyopadhyay
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Understanding whether a generated table is of good quality is important to be able to use it in creating or editing documents using automatic methods. In this work, we underline that existing measures for table quality evaluation fail to capture the overall semantics of the tables, and sometimes unfairly penalize good tables and reward bad ones. We propose TabEval, a novel table evaluation strategy that captures table semantics by first breaking down a table into a list of natural language atomic statements and then compares them with ground truth statements using entailment-based measures. To validate our approach, we curate a dataset comprising of text descriptions for 1,250 diverse Wikipedia tables, covering a range of topics and structures, in contrast to the limited scope of existing datasets. We compare TabEval with existing metrics using unsupervised and supervised text-to-table generation methods, demonstrating its stronger correlation with human judgments of table quality across four datasets.
pdf
bib
abs
Unraveling the Truth: Do VLMs really Understand Charts? A Deep Dive into Consistency and Robustness
Srija Mukhopadhyay
|
Adnan Qidwai
|
Aparna Garimella
|
Pritika Ramu
|
Vivek Gupta
|
Dan Roth
Findings of the Association for Computational Linguistics: EMNLP 2024
Chart question answering (CQA) is a crucial area of Visual Language Understanding. However, the robustness and consistency of current Visual Language Models (VLMs) in this field remain under-explored. This paper evaluates state-of-the-art VLMs on comprehensive datasets, developed specifically for this study, encompassing diverse question categories and chart formats. We investigate two key aspects: 1) the models’ ability to handle varying levels of chart and question complexity, and 2) their robustness across different visual representations of the same underlying data. Our analysis reveals significant performance variations based on question and chart types, highlighting both strengths and weaknesses of current models. Additionally, we identify areas for improvement and propose future research directions to build more robust and reliable CQA systems. This study sheds light on the limitations of current models and paves the way for future advancements in the field.
pdf
bib
abs
Zooming in on Zero-Shot Intent-Guided and Grounded Document Generation using LLMs
Pritika Ramu
|
Pranshu Gaur
|
Rishita Emandi
|
Himanshu Maheshwari
|
Danish Javed
|
Aparna Garimella
Proceedings of the 17th International Natural Language Generation Conference
Repurposing existing content on-the-fly to suit author’s goals for creating initial drafts is crucial for document creation. We introduce the task of intent-guided and grounded document generation: given a user-specified intent (e.g., section title) and a few reference documents, the goal is to generate section-level multimodal documents spanning text and images, grounded on the given references, in a zero-shot setting. We present a data curation strategy to obtain general-domain samples from Wikipedia, and collect 1,000 Wikipedia sections consisting of textual and image content along with appropriate intent specifications and references. We propose a simple yet effective planning-based prompting strategy, Multimodal Plan-And-Write (MM-PAW), to prompt LLMs to generate an intermediate plan with text and image descriptions, to guide the subsequent generation. We compare the performances of MM-PAW and a text-only variant of it with those of zero-shot Chain-of-Thought (CoT) using recent close and open-domain LLMs. Both of them lead to significantly better performances in terms of content relevance, structure, and groundedness to the references, more so in the smaller models (upto 12.5 points increase in Rouge 1-F1) than in the larger ones (upto 4 points increase in R1-F1). They are particularly effective in improving relatively smaller models’ performances, to be on par or higher than those of their larger counterparts for this task.
pdf
bib
abs
RE2: Region-Aware Relation Extraction from Visually Rich Documents
Pritika Ramu
|
Sijia Wang
|
Lalla Mouatadid
|
Joy Rimchala
|
Lifu Huang
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Current research in form understanding predominantly relies on large pre-trained language models, necessitating extensive data for pre-training. However, the importance of layout structure (i.e., the spatial relationship between the entity blocks in the visually rich document) to relation extraction has been overlooked. In this paper, we propose REgion-Aware Relation Extraction (RE2) that leverages region-level spatial structure among the entity blocks to improve their relation prediction. We design an edge-aware graph attention network to learn the interaction between entities while considering their spatial relationship defined by their region-level representations. We also introduce a constraint objective to regularize the model towards consistency with the inherent constraints of the relation extraction task. To support the research on relation extraction from visually rich documents and demonstrate the generalizability of RE2, we build a new benchmark dataset, DiverseForm, that covers a wide range of domains. Extensive experiments on DiverseForm and several public benchmark datasets demonstrate significant superiority and transferability of RE2 across various domains and languages, with up to 18.88% absolute F-score gain over all high-performing baselines