Qin Chao


2024

pdf bib
UrbanLLM: Autonomous Urban Activity Planning and Management with Large Language Models
Yue Jiang | Qin Chao | Yile Chen | Xiucheng Li | Shuai Liu | Gao Cong
Findings of the Association for Computational Linguistics: EMNLP 2024

Location-based services play an critical role in improving the quality of our daily lives. Despite the proliferation of numerous specialized AI models within spatio-temporal context of location-based services, these models struggle to autonomously tackle problems regarding complex urban planing and management. To bridge this gap, we introduce UrbanLLM, a fine-tuned large language model (LLM) designed to tackle diverse problems in urban scenarios. UrbanLLM functions as a problem- solver by decomposing urban-related queries into manageable sub-tasks, identifying suitable spatio-temporal AI models for each sub-task, and generating comprehensive responses to the given queries. Our experimental results indicate that UrbanLLM significantly outperforms other established LLMs, such as Llama and the GPT series, in handling problems concerning complex urban activity planning and management. UrbanLLM exhibits considerable potential in enhancing the effectiveness of solving problems in urban scenarios, reducing the workload and reliance for human experts.

pdf bib
Event Causality Is Key to Computational Story Understanding
Yidan Sun | Qin Chao | Boyang Li
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Cognitive science and symbolic AI research suggest that event causality provides vital information for story understanding. However, machine learning systems for story understanding rarely employ event causality, partially due to the lack of methods that reliably identify open-world causal event relations. Leveraging recent progress in large language models, we present the first method for event causality identification that leads to material improvements in computational story understanding. Our technique sets a new state of the art on the COPES dataset (Wang et al., 2023c) for causal event relation identification. Further, in the downstream story quality evaluation task, the identified causal relations lead to 3.6-16.6% relative improvement on correlation with human ratings. In the multimodal story video-text alignment task, we attain 4.1-10.9% increase on Clip Accuracy and 4.2-13.5% increase on Sentence IoU. The findings indicate substantial untapped potential for event causality in computational story understanding. The codebase is at https://github.com/insundaycathy/Event-Causality-Extraction.