Qingyang Li
2024
MoCoKGC: Momentum Contrast Entity Encoding for Knowledge Graph Completion
Qingyang Li
|
Yanru Zhong
|
Yuchu Qin
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
In recent years, numerous studies have sought to enhance the capabilities of pretrained language models (PLMs) for Knowledge Graph Completion (KGC) tasks by integrating structural information from knowledge graphs. However, existing approaches have not effectively combined the structural attributes of knowledge graphs with the textual descriptions of entities to generate robust entity encodings.To address this issue, this paper proposes MoCoKGC (Momentum Contrast Entity Encoding for Knowledge Graph Completion), which incorporates three primary encoders: the entity-relation encoder, the entity encoder, and the momentum entity encoder. Momentum contrastive learning not only provides more negative samples but also allows for the gradual updating of entity encodings. Consequently, we reintroduce the generated entity encodings into the encoder to incorporate the graph’s structural information.Additionally, MoCoKGC enhances the inferential capabilities of the entity-relation encoder through deep prompts of relations. On the standard evaluation metric, Mean Reciprocal Rank (MRR), the MoCoKGC model demonstrates superior performance, achieving a 7.1% improvement on the WN18RR dataset and an 11% improvement on the Wikidata5M dataset, while also surpassing the current best model on the FB15k-237 dataset. Through a series of experiments, this paper thoroughly examines the role and contribution of each component and parameter of the model.
Just Ask One More Time! Self-Agreement Improves Reasoning of Language Models in (Almost) All Scenarios
Lei Lin
|
Jiayi Fu
|
Pengli Liu
|
Qingyang Li
|
Yan Gong
|
Junchen Wan
|
Fuzheng Zhang
|
Zhongyuan Wang
|
Di Zhang
|
Kun Gai
Findings of the Association for Computational Linguistics: ACL 2024
Although chain-of-thought (CoT) prompting combined with language models has achieved encouraging results on complex reasoning tasks, the naive greedy decoding used in CoT prompting usually causes the repetitiveness and local optimality. To address this shortcoming, ensemble-optimization tries to obtain multiple reasoning paths to get the final answer assembly. However, current ensemble-optimization methods either simply employ rule-based post-processing such as self-consistency, or train an additional model based on several task-related human annotations to select the best one among multiple reasoning paths, yet fail to generalize to realistic settings where the type of input questions is unknown or the answer format of reasoning paths is unknown. To avoid their limitations, we propose Self-Agreement, a generalizable ensemble-optimization method applying in almost all scenarios where the type of input questions and the answer format of reasoning paths may be known or unknown. Self-agreement firstly samples from language model’s decoder to generate a diverse set of reasoning paths, and subsequently prompts the language model one more time to determine the optimal answer by selecting the most agreed answer among the sampled reasoning paths. Self-agreement simultaneously achieves remarkable performance on six public reasoning benchmarks and superior generalization capabilities.
2023
Synthetic Dialogue Dataset Generation using LLM Agents
Yelaman Abdullin
|
Diego Molla
|
Bahadorreza Ofoghi
|
John Yearwood
|
Qingyang Li
Proceedings of the Third Workshop on Natural Language Generation, Evaluation, and Metrics (GEM)
Linear programming (LP) problems are pervasive in real-life applications. However, despite their apparent simplicity, an untrained user may find it difficult to determine the linear model of their specific problem. We envisage the creation of a goal-oriented conversational agent that will engage in conversation with the user to elicit all information required so that a subsequent agent can generate the linear model. In this paper, we present an approach for the generation of sample dialogues that can be used to develop and train such a conversational agent. Using prompt engineering, we develop two agents that “talk” to each other, one acting as the conversational agent, and the other acting as the user. Using a set of text descriptions of linear problems from NL4Opt available to the user only, the agent and the user engage in conversation until the agent has retrieved all key information from the original problem description. We also propose an extrinsic evaluation of the dialogues by assessing how well the summaries generated by the dialogues match the original problem descriptions. We conduct human and automatic evaluations, including an evaluation approach that uses GPT-4 to mimic the human evaluation metrics. The evaluation results show an overall good quality of the dialogues, though research is still needed to improve the quality of the GPT-4 evaluation metrics. The resulting dialogues, including the human annotations of a subset, are available to the research community. The conversational agent used for the generation of the dialogues can be used as a baseline.