Radu Ionescu


2024

pdf bib
RoDia: A New Dataset for Romanian Dialect Identification from Speech
Rotaru Codruț | Nicolae Ristea | Radu Ionescu
Findings of the Association for Computational Linguistics: NAACL 2024

We introduce RoDia, the first dataset for Romanian dialect identification from speech. The RoDia dataset includes a varied compilation of speech samples from five distinct regions of Romania, covering both urban and rural environments, totaling 2 hours of manually annotated speech data. Along with our dataset, we introduce a set of competitive models to be used as baselines for future research. The top scoring model achieves a macro F1 score of 59.83% and a micro F1 score of 62.08%, indicating that the task is challenging. We thus believe that RoDia is a valuable resource that will stimulate research aiming to address the challenges of Romanian dialect identification. We release our dataset at https://github.com/codrut2/RoDia.

pdf bib
A Novel Cartography-Based Curriculum Learning Method Applied on RoNLI: The First Romanian Natural Language Inference Corpus
Eduard Poesina | Cornelia Caragea | Radu Ionescu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Natural language inference (NLI), the task of recognizing the entailment relationship in sentence pairs, is an actively studied topic serving as a proxy for natural language understanding. Despite the relevance of the task in building conversational agents and improving text classification, machine translation and other NLP tasks, to the best of our knowledge, there is no publicly available NLI corpus for the Romanian language. To this end, we introduce the first Romanian NLI corpus (RoNLI) comprising 58K training sentence pairs, which are obtained via distant supervision, and 6K validation and test sentence pairs, which are manually annotated with the correct labels. We conduct experiments with multiple machine learning methods based on distant learning, ranging from shallow models based on word embeddings to transformer-based neural networks, to establish a set of competitive baselines. Furthermore, we improve on the best model by employing a new curriculum learning strategy based on data cartography. Our dataset and code to reproduce the baselines are available at https://github.com/Eduard6421/RONLI.

2023

pdf bib
A Novel Contrastive Learning Method for Clickbait Detection on RoCliCo: A Romanian Clickbait Corpus of News Articles
Daria Broscoteanu | Radu Ionescu
Findings of the Association for Computational Linguistics: EMNLP 2023

To increase revenue, news websites often resort to using deceptive news titles, luring users into clicking on the title and reading the full news. Clickbait detection is the task that aims to automatically detect this form of false advertisement and avoid wasting the precious time of online users. Despite the importance of the task, to the best of our knowledge, there is no publicly available clickbait corpus for the Romanian language. To this end, we introduce a novel Romanian Clickbait Corpus (RoCliCo) comprising 8,313 news samples which are manually annotated with clickbait and non-clickbait labels. Furthermore, we conduct experiments with four machine learning methods, ranging from handcrafted models to recurrent and transformer-based neural networks, to establish a line-up of competitive baselines. We also carry out experiments with a weighted voting ensemble. Among the considered baselines, we propose a novel BERT-based contrastive learning model that learns to encode news titles and contents into a deep metric space such that titles and contents of non-clickbait news have high cosine similarity, while titles and contents of clickbait news have low cosine similarity. Our data set and code to reproduce the baselines are publicly available for download at https://github.com/dariabroscoteanu/RoCliCo.