Generic text summarization approaches often fail to address the specific intent and needs of individual users. Recently, scholarly attention has turned to the development of summarization methods that are more closely tailored and controlled to align with specific objectives and user needs. Despite a growing corpus of controllable summarization research, there is no comprehensive survey available that thoroughly explores the diverse controllable attributes employed in this context, delves into the associated challenges, and investigates the existing solutions. In this survey, we formalize the Controllable Text Summarization (CTS) task, categorize controllable attributes according to their shared characteristics and objectives, and present a thorough examination of existing datasets and methods within each category. Moreover, based on our findings, we uncover limitations and research gaps, while also exploring potential solutions and future directions for CTS. We release our detailed analysis of CTS papers at https://github.com/ashokurlana/controllable_text_summarization_survey.
Obtaining sufficient information in one’s mother tongue is crucial for satisfying the information needs of the users. While high-resource languages have abundant online resources, the situation is less than ideal for very low-resource languages. Moreover, the insufficient reporting of vital national and international events continues to be a worry, especially in languages with scarce resources, like Mizo. In this paper, we conduct a study to investigate the effectiveness of a simple methodology designed to generate a holistic summary for Mizo news articles, which leverages English-language news to supplement and enhance the information related to the corresponding news events. Furthermore, we make available 500 Mizo news articles and corresponding enriched holistic summaries. Human evaluation confirms that our approach significantly enhances the information coverage of Mizo news articles.
The rise of social media has exponentially witnessed the use of clickbait posts that grab users’ attention. Although work has been done to detect clickbait posts, this is the first task focused on generating appropriate spoilers for these potential clickbaits. This paper presents our approach in this direction. We use different encoding techniques that capture the context of the post text and the target paragraph. We propose hierarchical encoding with count and document length feature-based model for spoiler type classification which uses Recurrence over Pretrained Encoding. We also propose combining multiple ranking with reciprocal rank fusion for passage spoiler retrieval and question-answering approach for phrase spoiler retrieval. For multipart spoiler retrieval, we combine the above two spoiler retrieval methods. Experimental results over the benchmark suggest that our proposed spoiler retrieval methods are able to retrieve spoilers that are semantically very close to the ground truth spoilers.
Automatic Speech Recognition and its applications are rising in popularity across applications with reasonable inference results. Recent state-of-the-art approaches, often employ significantly large-scale models to show high accuracy for ASR as a whole but often do not consider detailed analysis of performance across low-resource languages applications. In this preliminary work, we propose to revisit ASR in the context of Connected Number Recognition (CNR). More specifically, we (i) present a new dataset HCNR collected to understand various errors of ASR models for CNR, (ii) establish preliminary benchmark and baseline model for CNR, (iii) explore error mitigation strategies and their after-effects on CNR. In the due process, we also compare with end-to-end large scale ASR models for reference, to show its effectiveness.
This paper presents the results of the Data Science for Digital Health (DS4DH) group in the MEDIQA-Chat Tasks at ACL-ClinicalNLP 2023. Our study combines the power of a classical machine learning method, Support Vector Machine, for classifying medical dialogues, along with the implementation of one-shot prompts using GPT-3.5. We employ dialogues and summaries from the same category as prompts to generate summaries for novel dialogues. Our findings exceed the average benchmark score, offering a robust reference for assessing performance in this field.
We present SUMO, a neural attention-based approach that learns to establish correctness of textual claims based on evidence in the form of text documents (e.g., news articles or web documents). SUMO further generates an extractive summary by presenting a diversified set of sentences from the documents that explain its decision on the correctness of the textual claim. Prior approaches to address the problem of fact checking and evidence extraction have relied on simple concatenation of claim and document word embeddings as an input to claim driven attention weight computation. This is done so as to extract salient words and sentences from the documents that help establish the correctness of the claim. However this design of claim-driven attention fails to capture the contextual information in documents properly. We improve on the prior art by using improved claim and title guided hierarchical attention to model effective contextual cues. We show the efficacy of our approach on political, healthcare, and environmental datasets.