Ranran Haoran Zhang

Penn State University


2023

pdf bib
Exploring the Potential of Large Language Models in Generating Code-Tracing Questions for Introductory Programming Courses
Aysa Fan | Ranran Haoran Zhang | Luc Paquette | Rui Zhang
Findings of the Association for Computational Linguistics: EMNLP 2023

In this paper, we explore the application of large language models (LLMs) for generating code-tracing questions in introductory programming courses. We designed targeted prompts for GPT4, guiding it to generate code-tracing questions based on code snippets and descriptions. We established a set of human evaluation metrics to assess the quality of questions produced by the model compared to those created by human experts. Our analysis provides insights into the capabilities and potential of LLMs in generating diverse code-tracing questions. Additionally, we present a unique dataset of human and LLM-generated tracing questions, serving as a valuable resource for both the education and NLP research communities. This work contributes to the ongoing dialogue on the potential uses of LLMs in educational settings.

pdf bib
Unified Low-Resource Sequence Labeling by Sample-Aware Dynamic Sparse Finetuning
Sarkar Snigdha Sarathi Das | Ranran Haoran Zhang | Peng Shi | Wenpeng Yin | Rui Zhang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Unified Sequence Labeling that articulates different sequence labeling problems such as Named Entity Recognition, Relation Extraction, Semantic Role Labeling, etc. in a generalized sequence-to-sequence format opens up the opportunity to make the maximum utilization of large language model knowledge toward structured prediction. Unfortunately, this requires formatting them into specialized augmented format unknown to the base pretrained language model (PLMs) necessitating finetuning to the target format. This significantly bounds its usefulness in data-limited settings where finetuning large models cannot properly generalize to the target format. To address this challenge and leverage PLM knowledge effectively, we propose FISH-DIP, a sample-aware dynamic sparse finetuning strategy that selectively focuses on a fraction of parameters, informed by feedback from highly regressing examples, during the fine-tuning process. By leveraging the dynamism of sparsity, our approach mitigates the impact of well-learned samples and prioritizes underperforming instances for improvement in generalization. Across five tasks of sequence labeling, we demonstrate that FISH-DIP can smoothly optimize the model in low resource settings offering upto 40% performance improvements over full fine-tuning depending on target evaluation settings. Also, compared to in-context learning and other parameter-efficient fine-tuning approaches, FISH-DIP performs comparably or better, notably in extreme low-resource settings. The source code of FISH-DIP will be available at [this URL](https://github.com/psunlpgroup/FISH-DIP)

pdf bib
ConEntail: An Entailment-based Framework for Universal Zero and Few Shot Classification with Supervised Contrastive Pretraining
Ranran Haoran Zhang | Aysa Xuemo Fan | Rui Zhang
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

A universal classification model aims to generalize to diverse classification tasks in both zero and few shot settings. A promising way toward universal classification is to cast heterogeneous data formats into a dataset-agnostic “meta-task” (e.g., textual entailment, question answering) then pretrain a model on the combined meta dataset. The existing work is either pretrained on specific subsets of classification tasks, or pretrained on both classification and generation data but the model could not fulfill its potential in universality and reliability. These also leave a massive amount of annotated data under-exploited. To fill these gaps, we propose ConEntail, a new framework for universal zero and few shot classification with supervised contrastive pretraining. Our unified meta-task for classification is based on nested entailment. It can be interpreted as “Does sentence a entails [sentence b entails label c]”. This formulation enables us to make better use of 57 annotated classification datasets for supervised contrastive pretraining and universal evaluation. In this way, ConEntail helps the model (1) absorb knowledge from different datasets, and (2) gain consistent performance gain with more pretraining data. In experiments, we compare our model with discriminative and generative models pretrained on the same dataset. The results confirm that our framework effectively exploits existing annotated data and consistently outperforms baselines in both zero (9.4% average improvement) and few shot settings (3.5% average improvement). Our code is available in supplementary materials.

2021

pdf bib
COVID-19 Literature Knowledge Graph Construction and Drug Repurposing Report Generation
Qingyun Wang | Manling Li | Xuan Wang | Nikolaus Parulian | Guangxing Han | Jiawei Ma | Jingxuan Tu | Ying Lin | Ranran Haoran Zhang | Weili Liu | Aabhas Chauhan | Yingjun Guan | Bangzheng Li | Ruisong Li | Xiangchen Song | Yi Fung | Heng Ji | Jiawei Han | Shih-Fu Chang | James Pustejovsky | Jasmine Rah | David Liem | Ahmed ELsayed | Martha Palmer | Clare Voss | Cynthia Schneider | Boyan Onyshkevych
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Demonstrations

To combat COVID-19, both clinicians and scientists need to digest the vast amount of relevant biomedical knowledge in literature to understand the disease mechanism and the related biological functions. We have developed a novel and comprehensive knowledge discovery framework, COVID-KG to extract fine-grained multimedia knowledge elements (entities, relations and events) from scientific literature. We then exploit the constructed multimedia knowledge graphs (KGs) for question answering and report generation, using drug repurposing as a case study. Our framework also provides detailed contextual sentences, subfigures, and knowledge subgraphs as evidence. All of the data, KGs, reports.

2020

pdf bib
Minimize Exposure Bias of Seq2Seq Models in Joint Entity and Relation Extraction
Ranran Haoran Zhang | Qianying Liu | Aysa Xuemo Fan | Heng Ji | Daojian Zeng | Fei Cheng | Daisuke Kawahara | Sadao Kurohashi
Findings of the Association for Computational Linguistics: EMNLP 2020

Joint entity and relation extraction aims to extract relation triplets from plain text directly. Prior work leverages Sequence-to-Sequence (Seq2Seq) models for triplet sequence generation. However, Seq2Seq enforces an unnecessary order on the unordered triplets and involves a large decoding length associated with error accumulation. These methods introduce exposure bias, which may cause the models overfit to the frequent label combination, thus limiting the generalization ability. We propose a novel Sequence-to-Unordered-Multi-Tree (Seq2UMTree) model to minimize the effects of exposure bias by limiting the decoding length to three within a triplet and removing the order among triplets. We evaluate our model on two datasets, DuIE and NYT, and systematically study how exposure bias alters the performance of Seq2Seq models. Experiments show that the state-of-the-art Seq2Seq model overfits to both datasets while Seq2UMTree shows significantly better generalization. Our code is available at https://github.com/WindChimeRan/OpenJERE.