Robik Shrestha
2024
BloomVQA: Assessing Hierarchical Multi-modal Comprehension
Yunye Gong
|
Robik Shrestha
|
Jared Claypoole
|
Michael Cogswell
|
Arijit Ray
|
Christopher Kanan
|
Ajay Divakaran
Findings of the Association for Computational Linguistics: ACL 2024
We propose a novel VQA dataset, BloomVQA, to facilitate comprehensive evaluation of large vision-language models on comprehension tasks. Unlike current benchmarks that often focus on fact-based memorization and simple reasoning tasks without theoretical grounding, we collect multiple-choice samples based on picture stories that reflect different levels of comprehension, as laid out in Bloom’s Taxonomy, a classic framework for learning assessment widely adopted in education research. Our data maps to a novel hierarchical graph representation which enables automatic data augmentation and novel measures characterizing model consistency. We perform graded evaluation and reliability analysis on recent multi-modal models. In comparison to low-level tasks, we observe decreased performance on tasks requiring advanced comprehension and cognitive skills with up to 38.0% drop in VQA accuracy. In comparison to earlier models, GPT-4V demonstrates improved accuracy over all comprehension levels and also shows a tendency of bypassing visual inputs especially for higher-level tasks. Current models also show consistency patterns misaligned with human comprehension in various scenarios, demonstrating the need for improvement based on theoretically-grounded criteria. The dataset can be accessed at https://huggingface.co/datasets/ygong/BloomVQA.
2020
A negative case analysis of visual grounding methods for VQA
Robik Shrestha
|
Kushal Kafle
|
Christopher Kanan
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
Existing Visual Question Answering (VQA) methods tend to exploit dataset biases and spurious statistical correlations, instead of producing right answers for the right reasons. To address this issue, recent bias mitigation methods for VQA propose to incorporate visual cues (e.g., human attention maps) to better ground the VQA models, showcasing impressive gains. However, we show that the performance improvements are not a result of improved visual grounding, but a regularization effect which prevents over-fitting to linguistic priors. For instance, we find that it is not actually necessary to provide proper, human-based cues; random, insensible cues also result in similar improvements. Based on this observation, we propose a simpler regularization scheme that does not require any external annotations and yet achieves near state-of-the-art performance on VQA-CPv2.
Search
Fix data
Co-authors
- Christopher Kanan 2
- Jared Claypoole 1
- Michael Cogswell 1
- Ajay Divakaran 1
- Yunye Gong 1
- show all...