Rocktim Jyoti Das
2024
Synergizing In-context Learning with Hints for End-to-end Task-oriented Dialog Systems
Vishal Vivek Saley
|
Rocktim Jyoti Das
|
Dinesh Raghu
|
Mausam .
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
End-to-end Task-Oriented Dialog (TOD) systems typically require extensive training datasets to perform well. In contrast, large language model (LLM) based TOD systems can excel even with limited data due to their ability to learn tasks through in-context exemplars. However, these models lack alignment with the style of responses in training data and often generate comprehensive responses, making it difficult for users to grasp the information quickly. In response, we propose SyncTOD that synergizes LLMs with task-specific hints to improve alignment in low-data settings. SyncTOD employs small auxiliary models to provide hints and select exemplars for in-context prompts. With ChatGPT, SyncTOD achieves superior performance compared to LLM-based baselines and SoTA models in low-data settings, while retaining competitive performance in full-data settings.
MediTOD: An English Dialogue Dataset for Medical History Taking with Comprehensive Annotations
Vishal Vivek Saley
|
Goonjan Saha
|
Rocktim Jyoti Das
|
Dinesh Raghu
|
Mausam .
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Medical task-oriented dialogue systems can assist doctors by collecting patient medical history, aiding in diagnosis, or guiding treatment selection, thereby reducing doctor burnout and expanding access to medical services. However, doctor-patient dialogue datasets are not readily available, primarily due to privacy regulations. Moreover, existing datasets lack comprehensive annotations involving medical slots and their different attributes, such as symptoms and their onset, progression, and severity. These comprehensive annotations are crucial for accurate diagnosis. Finally, most existing datasets are non-English, limiting their utility for the larger research community.In response, we introduce MediTOD, a new dataset of doctor-patient dialogues in English for the medical history-taking task. Collaborating with doctors, we devise a questionnaire-based labeling scheme tailored to the medical domain. Then, medical professionals create the dataset with high-quality comprehensive annotations, capturing medical slots and their attributes. We establish benchmarks in supervised and few-shot settings on MediTOD for natural language understanding, policy learning, and natural language generation subtasks, evaluating models from both TOD and biomedical domains. We make MediTOD publicly available for future research.
Factuality of Large Language Models: A Survey
Yuxia Wang
|
Minghan Wang
|
Muhammad Arslan Manzoor
|
Fei Liu
|
Georgi Nenkov Georgiev
|
Rocktim Jyoti Das
|
Preslav Nakov
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Large language models (LLMs), especially when instruction-tuned for chat, have become part of our daily lives, freeing people from the process of searching, extracting, and integrating information from multiple sources by offering a straightforward answer to a variety of questions in a single place. Unfortunately, in many cases, LLM responses are factually incorrect, which limits their applicability in real-world scenarios. As a result, research on evaluating and improving the factuality of LLMs has attracted a lot of research attention recently. In this survey, we critically analyze existing work with the aim to identify the major challenges and their associated causes, pointing out to potential solutions for improving the factuality of LLMs, and analyzing the obstacles to automated factuality evaluation for open-ended text generation. We further offer an outlook on where future research should go.
Search
Co-authors
- Vishal Vivek Saley 2
- Dinesh Raghu 2
- Mausam . 2
- Goonjan Saha 1
- Yuxia Wang 1
- show all...