Ruifan Li


2023

pdf bib
USSA: A Unified Table Filling Scheme for Structured Sentiment Analysis
Zepeng Zhai | Hao Chen | Ruifan Li | Xiaojie Wang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Most previous studies on Structured Sentiment Analysis (SSA) have cast it as a problem of bi-lexical dependency parsing, which cannot address issues of overlap and discontinuity simultaneously. In this paper, we propose a niche-targeting and effective solution. Our approach involves creating a novel bi-lexical dependency parsing graph, which is then converted to a unified 2D table-filling scheme, namely USSA. The proposed scheme resolves the kernel bottleneck of previous SSA methods by utilizing 13 different types of relations. In addition, to closely collaborate with the USSA scheme, we have developed a model that includes a proposed bi-axial attention module to effectively capture the correlations among relations in the rows and columns of the table. Extensive experimental results on benchmark datasets demonstrate the effectiveness and robustness of our proposed framework, outperforming state-of-the-art methods consistently.

2022

pdf bib
Enhanced Multi-Channel Graph Convolutional Network for Aspect Sentiment Triplet Extraction
Hao Chen | Zepeng Zhai | Fangxiang Feng | Ruifan Li | Xiaojie Wang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Aspect Sentiment Triplet Extraction (ASTE) is an emerging sentiment analysis task. Most of the existing studies focus on devising a new tagging scheme that enables the model to extract the sentiment triplets in an end-to-end fashion. However, these methods ignore the relations between words for ASTE task. In this paper, we propose an Enhanced Multi-Channel Graph Convolutional Network model (EMC-GCN) to fully utilize the relations between words. Specifically, we first define ten types of relations for ASTE task, and then adopt a biaffine attention module to embed these relations as an adjacent tensor between words in a sentence. After that, our EMC-GCN transforms the sentence into a multi-channel graph by treating words and the relation adjacent tensor as nodes and edges, respectively. Thus, relation-aware node representations can be learnt. Furthermore, we consider diverse linguistic features to enhance our EMC-GCN model. Finally, we design an effective refining strategy on EMC-GCN for word-pair representation refinement, which considers the implicit results of aspect and opinion extraction when determining whether word pairs match or not. Extensive experimental results on the benchmark datasets demonstrate that the effectiveness and robustness of our proposed model, which outperforms state-of-the-art methods significantly.

pdf bib
COM-MRC: A COntext-Masked Machine Reading Comprehension Framework for Aspect Sentiment Triplet Extraction
Zepeng Zhai | Hao Chen | Fangxiang Feng | Ruifan Li | Xiaojie Wang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Aspect Sentiment Triplet Extraction (ASTE) aims to extract sentiment triplets from sentences, which was recently formalized as an effective machine reading comprehension (MRC) based framework. However, when facing multiple aspect terms, the MRC-based methods could fail due to the interference from other aspect terms. In this paper, we propose a novel COntext-Masked MRC (COM-MRC) framework for ASTE. Our COM-MRC framework comprises three closely-related components: a context augmentation strategy, a discriminative model, and an inference method. Specifically, a context augmentation strategy is designed by enumerating all masked contexts for each aspect term. The discriminative model comprises four modules, i.e., aspect and opinion extraction modules, sentiment classification and aspect detection modules. In addition, a two-stage inference method first extracts all aspects and then identifies their opinions and sentiment through iteratively masking the aspects. Extensive experimental results on benchmark datasets show the effectiveness of our proposed COM-MRC framework, which outperforms state-of-the-art methods consistently.

pdf bib
KE-GCL: Knowledge Enhanced Graph Contrastive Learning for Commonsense Question Answering
Lihui Zhang | Ruifan Li
Findings of the Association for Computational Linguistics: EMNLP 2022

Commonsense question answering (CQA) aims to choose the correct answers for commonsense questions. Most existing works focus on extracting and reasoning over external knowledge graphs (KG). However, the noise in KG prevents these models from learning effective representations. In this paper, we propose a Knowledge Enhanced Graph Contrastive Learning model (KE-GCL) by incorporating the contextual descriptions of entities and adopting a graph contrastive learning scheme. Specifically, for QA pairs we represent the knowledge from KG and contextual descriptions. Then, the representations of contextual descriptions as context nodes are inserted into KG, forming the knowledge-enhanced graphs.Moreover, we design a contrastive learning method on graphs. For knowledge-enhanced graphs, we build their augmented views with an adaptive sampling strategy. After that, we reason over graphs to update their representations by scattering edges and aggregating nodes. To further improve GCL, hard graph negatives are chosen based on incorrect answers. Extensive experiments on two benchmark datasets demonstrate the effectiveness of our proposed KE-GCL, which outperforms previous methods consistently.

pdf bib
A Simple Model for Distantly Supervised Relation Extraction
Ziqin Rao | Fangxiang Feng | Ruifan Li | Xiaojie Wang
Proceedings of the 29th International Conference on Computational Linguistics

Distantly supervised relation extraction is challenging due to the noise within data. Recent methods focus on exploiting bag representations based on deep neural networks with complex de-noising scheme to achieve remarkable performance. In this paper, we propose a simple but effective BERT-based Graph convolutional network Model (i.e., BGM). Our BGM comprises of an instance embedding module and a bag representation module. The instance embedding module uses a BERT-based pretrained language model to extract key information from each instance. The bag representaion module constructs the corresponding bag graph then apply a convolutional operation to obtain the bag representation. Our BGM model achieves a considerable improvement on two benchmark datasets, i.e., NYT10 and GDS.

2021

pdf bib
Dual Graph Convolutional Networks for Aspect-based Sentiment Analysis
Ruifan Li | Hao Chen | Fangxiang Feng | Zhanyu Ma | Xiaojie Wang | Eduard Hovy
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Aspect-based sentiment analysis is a fine-grained sentiment classification task. Recently, graph neural networks over dependency trees have been explored to explicitly model connections between aspects and opinion words. However, the improvement is limited due to the inaccuracy of the dependency parsing results and the informal expressions and complexity of online reviews. To overcome these challenges, in this paper, we propose a dual graph convolutional networks (DualGCN) model that considers the complementarity of syntax structures and semantic correlations simultaneously. Particularly, to alleviate dependency parsing errors, we design a SynGCN module with rich syntactic knowledge. To capture semantic correlations, we design a SemGCN module with self-attention mechanism. Furthermore, we propose orthogonal and differential regularizers to capture semantic correlations between words precisely by constraining attention scores in the SemGCN module. The orthogonal regularizer encourages the SemGCN to learn semantically correlated words with less overlap for each word. The differential regularizer encourages the SemGCN to learn semantic features that the SynGCN fails to capture. Experimental results on three public datasets show that our DualGCN model outperforms state-of-the-art methods and verify the effectiveness of our model.