Ryoko Tokuhisa


2022

pdf bib
N-best Response-based Analysis of Contradiction-awareness in Neural Response Generation Models
Shiki Sato | Reina Akama | Hiroki Ouchi | Ryoko Tokuhisa | Jun Suzuki | Kentaro Inui
Proceedings of the 23rd Annual Meeting of the Special Interest Group on Discourse and Dialogue

Avoiding the generation of responses that contradict the preceding context is a significant challenge in dialogue response generation. One feasible method is post-processing, such as filtering out contradicting responses from a resulting n-best response list. In this scenario, the quality of the n-best list considerably affects the occurrence of contradictions because the final response is chosen from this n-best list. This study quantitatively analyzes the contextual contradiction-awareness of neural response generation models using the consistency of the n-best lists. Particularly, we used polar questions as stimulus inputs for concise and quantitative analyses. Our tests illustrate the contradiction-awareness of recent neural response generation models and methodologies, followed by a discussion of their properties and limitations.

pdf bib
Chat Translation Error Detection for Assisting Cross-lingual Communications
Yunmeng Li | Jun Suzuki | Makoto Morishita | Kaori Abe | Ryoko Tokuhisa | Ana Brassard | Kentaro Inui
Proceedings of the 3rd Workshop on Evaluation and Comparison of NLP Systems

pdf bib
Bipartite-play Dialogue Collection for Practical Automatic Evaluation of Dialogue Systems
Shiki Sato | Yosuke Kishinami | Hiroaki Sugiyama | Reina Akama | Ryoko Tokuhisa | Jun Suzuki
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing: Student Research Workshop

Automation of dialogue system evaluation is a driving force for the efficient development of dialogue systems. This paper introduces the bipartite-play method, a dialogue collection method for automating dialogue system evaluation. It addresses the limitations of existing dialogue collection methods: (i) inability to compare with systems that are not publicly available, and (ii) vulnerability to cheating by intentionally selecting systems to be compared. Experimental results show that the automatic evaluation using the bipartite-play method mitigates these two drawbacks and correlates as strongly with human subjectivity as existing methods.

pdf bib
Target-Guided Open-Domain Conversation Planning
Yosuke Kishinami | Reina Akama | Shiki Sato | Ryoko Tokuhisa | Jun Suzuki | Kentaro Inui
Proceedings of the 29th International Conference on Computational Linguistics

Prior studies addressing target-oriented conversational tasks lack a crucial notion that has been intensively studied in the context of goal-oriented artificial intelligence agents, namely, planning. In this study, we propose the task of Target-Guided Open-Domain Conversation Planning (TGCP) task to evaluate whether neural conversational agents have goal-oriented conversation planning abilities. Using the TGCP task, we investigate the conversation planning abilities of existing retrieval models and recent strong generative models. The experimental results reveal the challenges facing current technology.

pdf bib
Topicalization in Language Models: A Case Study on Japanese
Riki Fujihara | Tatsuki Kuribayashi | Kaori Abe | Ryoko Tokuhisa | Kentaro Inui
Proceedings of the 29th International Conference on Computational Linguistics

Humans use different wordings depending on the context to facilitate efficient communication. For example, instead of completely new information, information related to the preceding context is typically placed at the sentence-initial position. In this study, we analyze whether neural language models (LMs) can capture such discourse-level preferences in text generation. Specifically, we focus on a particular aspect of discourse, namely the topic-comment structure. To analyze the linguistic knowledge of LMs separately, we chose the Japanese language, a topic-prominent language, for designing probing tasks, and we created human topicalization judgment data by crowdsourcing. Our experimental results suggest that LMs have different generalizations from humans; LMs exhibited less context-dependent behaviors toward topicalization judgment. These results highlight the need for the additional inductive biases to guide LMs to achieve successful discourse-level generalization.

pdf bib
Enhancing Contextual Word Representations Using Embedding of Neighboring Entities in Knowledge Graphs
Ryoko Tokuhisa | Keisuke Kawano | Akihiro Nakamura | Satoshi Koide
Proceedings of the 29th International Conference on Computational Linguistics

Pre-trained language models (PLMs) such as BERT and RoBERTa have dramatically improved the performance of various natural language processing tasks. Although these models are trained on large amounts of raw text, they have no explicit grounding in real-world entities. Knowledge graphs (KGs) are manually annotated with factual knowledge and store the relations between nodes corresponding to entities as labeled edges. This paper proposes a mechanism called KG-attention, which integrates the structure of a KG into recent PLM architectures. Unlike the existing PLM+KG integration methods, KG-attention generalizes the embeddings of neighboring entities using the relation embeddings; accordingly, it can handle relations between unconnected entities in the KG. Experimental results demonstrated that our method achieved significant improvements in a relation classification task, an entity typing task, and several language comprehension tasks.

2008

pdf bib
Emotion Classification Using Massive Examples Extracted from the Web
Ryoko Tokuhisa | Kentaro Inui | Yuji Matsumoto
Proceedings of the 22nd International Conference on Computational Linguistics (Coling 2008)

2006

pdf bib
Relationship between Utterances and “Enthusiasm” in Non-task-oriented Conversational Dialogue
Ryoko Tokuhisa | Ryuta Terashima
Proceedings of the 7th SIGdial Workshop on Discourse and Dialogue