Salomon Kabongo Kabenamualu


2025

pdf bib
IrokoBench: A New Benchmark for African Languages in the Age of Large Language Models
David Ifeoluwa Adelani | Jessica Ojo | Israel Abebe Azime | Jian Yun Zhuang | Jesujoba Oluwadara Alabi | Xuanli He | Millicent Ochieng | Sara Hooker | Andiswa Bukula | En-Shiun Annie Lee | Chiamaka Ijeoma Chukwuneke | Happy Buzaaba | Blessing Kudzaishe Sibanda | Godson Koffi Kalipe | Jonathan Mukiibi | Salomon Kabongo Kabenamualu | Foutse Yuehgoh | Mmasibidi Setaka | Lolwethu Ndolela | Nkiruka Odu | Rooweither Mabuya | Salomey Osei | Shamsuddeen Hassan Muhammad | Sokhar Samb | Tadesse Kebede Guge | Tombekai Vangoni Sherman | Pontus Stenetorp
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Despite the widespread adoption of Large language models (LLMs), their remarkable capabilities remain limited to a few high-resource languages. Additionally, many low-resource languages (e.g. African languages) are often evaluated only on basic text classification tasks due to the lack of appropriate or comprehensive benchmarks outside of high-resource languages. In this paper, we introduce IrokoBench—a human-translated benchmark dataset for 17 typologically-diverse low-resource African languages covering three tasks: natural language inference(AfriXNLI), mathematical reasoning(AfriMGSM), and multi-choice knowledge-based QA(AfriMMLU). We use IrokoBench to evaluate zero-shot, few-shot, and translate-test settings(where test sets are translated into English) across 10 open and four proprietary LLMs. Our evaluation reveals a significant performance gap between high-resource languages (such as English and French) and low-resource African languages. We observe a significant performance gap between open and proprietary models, with the highest performing open model, Gemma 2 27B only at 63% of the best-performing proprietary model GPT-4o performance. Machine translating the test set to English before evaluation helped to close the gap for larger models that are English-centric, like Gemma 2 27B and LLaMa 3.1 70B. These findings suggest that more efforts are needed to develop and adapt LLMs for African languages.

2022

pdf bib
LiSTra Automatic Speech Translation: English to Lingala Case Study
Salomon Kabongo Kabenamualu | Vukosi Marivate | Herman Kamper
Proceedings of the Workshop on Dataset Creation for Lower-Resourced Languages within the 13th Language Resources and Evaluation Conference

In recent years there has been great interest in addressing the data scarcity of African languages and providing baseline models for different Natural Language Processing tasks (Orife et al., 2020). Several initiatives (Nekoto et al., 2020) on the continent uses the Bible as a data source to provide proof of concept for some NLP tasks. In this work, we present the Lingala Speech Translation (LiSTra) dataset, release a full pipeline for the construction of such dataset in other languages, and report baselines using both the traditional cascade approach (Automatic Speech Recognition - Machine Translation), and a revolutionary transformer based End-2-End architecture (Liu et al., 2020) with a custom interactive attention that allows information sharing between the recognition decoder and the translation decoder.

2020

pdf bib
Participatory Research for Low-resourced Machine Translation: A Case Study in African Languages
Wilhelmina Nekoto | Vukosi Marivate | Tshinondiwa Matsila | Timi Fasubaa | Taiwo Fagbohungbe | Solomon Oluwole Akinola | Shamsuddeen Muhammad | Salomon Kabongo Kabenamualu | Salomey Osei | Freshia Sackey | Rubungo Andre Niyongabo | Ricky Macharm | Perez Ogayo | Orevaoghene Ahia | Musie Meressa Berhe | Mofetoluwa Adeyemi | Masabata Mokgesi-Selinga | Lawrence Okegbemi | Laura Martinus | Kolawole Tajudeen | Kevin Degila | Kelechi Ogueji | Kathleen Siminyu | Julia Kreutzer | Jason Webster | Jamiil Toure Ali | Jade Abbott | Iroro Orife | Ignatius Ezeani | Idris Abdulkadir Dangana | Herman Kamper | Hady Elsahar | Goodness Duru | Ghollah Kioko | Murhabazi Espoir | Elan van Biljon | Daniel Whitenack | Christopher Onyefuluchi | Chris Chinenye Emezue | Bonaventure F. P. Dossou | Blessing Sibanda | Blessing Bassey | Ayodele Olabiyi | Arshath Ramkilowan | Alp Öktem | Adewale Akinfaderin | Abdallah Bashir
Findings of the Association for Computational Linguistics: EMNLP 2020

Research in NLP lacks geographic diversity, and the question of how NLP can be scaled to low-resourced languages has not yet been adequately solved. ‘Low-resourced’-ness is a complex problem going beyond data availability and reflects systemic problems in society. In this paper, we focus on the task of Machine Translation (MT), that plays a crucial role for information accessibility and communication worldwide. Despite immense improvements in MT over the past decade, MT is centered around a few high-resourced languages. As MT researchers cannot solve the problem of low-resourcedness alone, we propose participatory research as a means to involve all necessary agents required in the MT development process. We demonstrate the feasibility and scalability of participatory research with a case study on MT for African languages. Its implementation leads to a collection of novel translation datasets, MT benchmarks for over 30 languages, with human evaluations for a third of them, and enables participants without formal training to make a unique scientific contribution. Benchmarks, models, data, code, and evaluation results are released at https://github.com/masakhane-io/masakhane-mt.