2024
pdf
bib
abs
ArabicNLU 2024: The First Arabic Natural Language Understanding Shared Task
Mohammed Khalilia
|
Sanad Malaysha
|
Reem Suwaileh
|
Mustafa Jarrar
|
Alaa Aljabari
|
Tamer Elsayed
|
Imed Zitouni
Proceedings of The Second Arabic Natural Language Processing Conference
This paper presents an overview of the Arabic Natural Language Understanding (ArabicNLU 2024) shared task, focusing on two subtasks: Word Sense Disambiguation (WSD) and Location Mention Disambiguation (LMD). The task aimed to evaluate the ability of automated systems to resolve word ambiguity and identify locations mentioned in Arabic text. We provided participants with novel datasets, including a sense-annotated corpus for WSD, called SALMA with approximately 34k annotated tokens, and the dataset with 3,893 annotations and 763 unique location mentions. These are challenging tasks. Out of the 38 registered teams, only three teams participated in the final evaluation phase, with the highest accuracy being 77.8% for WSD and 95.0% for LMD. The shared task not only facilitated the evaluation and comparison of different techniques, but also provided valuable insights and resources for the continued advancement of Arabic NLU technologies.
pdf
bib
abs
AraFinNLP 2024: The First Arabic Financial NLP Shared Task
Sanad Malaysha
|
Mo El-Haj
|
Saad Ezzini
|
Mohammed Khalilia
|
Mustafa Jarrar
|
Sultan Almujaiwel
|
Ismail Berrada
|
Houda Bouamor
Proceedings of The Second Arabic Natural Language Processing Conference
The expanding financial markets of the Arab world require sophisticated Arabic NLP tools. To address this need within the banking domain, the Arabic Financial NLP (AraFinNLP) shared task proposes two subtasks: (i) Multi-dialect Intent Detection and (ii) Cross-dialect Translation and Intent Preservation. This shared task uses the updated ArBanking77 dataset, which includes about 39k parallel queries in MSA and four dialects. Each query is labeled with one or more of a common 77 intents in the banking domain. These resources aim to foster the development of robust financial Arabic NLP, particularly in the areas of machine translation and banking chat-bots.A total of 45 unique teams registered for this shared task, with 11 of them actively participated in the test phase. Specifically, 11 teams participated in Subtask 1, while only 1 team participated in Subtask 2. The winning team of Subtask 1 achieved F1 score of 0.8773, and the only team submitted in Subtask 2 achieved a 1.667 BLEU score.
pdf
bib
abs
NLU-STR at SemEval-2024 Task 1: Generative-based Augmentation and Encoder-based Scoring for Semantic Textual Relatedness
Sanad Malaysha
|
Mustafa Jarrar
|
Mohammed Khalilia
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)
Semantic textual relatedness is a broader concept of semantic similarity. It measures the extent to which two chunks of text convey similar meaning or topics, or share related concepts or contexts. This notion of relatedness can be applied in various applications, such as document clustering and summarizing. SemRel-2024, a shared task in SemEval-2024, aims at reducing the gap in the semantic relatedness task by providing datasets for fourteen languages and dialects including Arabic. This paper reports on our participation in Track A (Algerian and Moroccan dialects) and Track B (Modern Standard Arabic). A BERT-based model is augmented and fine-tuned for regression scoring in supervised track (A), while BERT-based cosine similarity is employed for unsupervised track (B). Our system ranked 1st in SemRel-2024 for MSA with a Spearman correlation score of 0.49. We ranked 5th for Moroccan and 12th for Algerian with scores of 0.83 and 0.53, respectively.
2023
pdf
bib
abs
SALMA: Arabic Sense-Annotated Corpus and WSD Benchmarks
Mustafa Jarrar
|
Sanad Malaysha
|
Tymaa Hammouda
|
Mohammed Khalilia
Proceedings of ArabicNLP 2023
SALMA, the first Arabic sense-annotated corpus, consists of ~34K tokens, which are all sense-annotated. The corpus is annotated using two different sense inventories simultaneously (Modern and Ghani). SALMA novelty lies in how tokens and senses are associated. Instead of linking a token to only one intended sense, SALMA links a token to multiple senses and provides a score to each sense. A smart web-based annotation tool was developed to support scoring multiple senses against a given word. In addition to sense annotations, we also annotated the corpus using six types of named entities. The quality of our annotations was assessed using various metrics (Kappa, Linear Weighted Kappa, Quadratic Weighted Kappa, Mean Average Error, and Root Mean Square Error), which show very high inter-annotator agreement. To establish a Word Sense Disambiguation baseline using our SALMA corpus, we developed an end-to-end Word Sense Disambiguation system using Target Sense Verification. We used this system to evaluate three Target Sense Verification models available in the literature. Our best model achieved an accuracy with 84.2% using Modern and 78.7% using Ghani. The full corpus and the annotation tool are open-source and publicly available at https://sina.birzeit.edu/salma/.
pdf
bib
abs
Context-Gloss Augmentation for Improving Arabic Target Sense Verification
Sanad Malaysha
|
Mustafa Jarrar
|
Mohammed Khalilia
Proceedings of the 12th Global Wordnet Conference
Arabic language lacks semantic datasets and sense inventories. The most common semantically-labeled dataset for Arabic is the ArabGlossBERT, a relatively small dataset that consists of 167K context-gloss pairs (about 60K positive and 107K negative pairs), collected from Arabic dictionaries. This paper presents an enrichment to the ArabGlossBERT dataset, by augmenting it using (Arabic-English-Arabic) machine back-translation. Augmentation increased the dataset size to 352K pairs (149K positive and 203K negative pairs). We measure the impact of augmentation using different data configurations to fine-tune BERT on target sense verification (TSV) task. Overall, the accuracy ranges between 78% to 84% for different data configurations. Although our approach performed at par with the baseline, we did observe some improvements for some POS tags in some experiments. Furthermore, our fine-tuned models are trained on a larger dataset covering larger vocabulary and contexts. We provide an in-depth analysis of the accuracy for each part-of-speech (POS).