Shengguang Wu
2024
Rethinking Pragmatics in Large Language Models: Towards Open-Ended Evaluation and Preference Tuning
Shengguang Wu
|
Shusheng Yang
|
Zhenglun Chen
|
Qi Su
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
This study addresses the challenges of assessing and enhancing social-pragmatic inference in large language models (LLMs). We first highlight the inadequacy of current accuracy-based multiple choice question answering (MCQA) formats in assessing social-pragmatic reasoning, and propose the direct evaluation of models’ free-form responses as measure, which correlates better with human judgment. Furthermore, we explore methods to improve pragmatic abilities in LLMs, advocating for preference optimization (PO) over supervised finetuning (SFT), given the absence of a definitive “gold” answer in social contexts. Our results show that preferential tuning consistently outperforms SFT across pragmatic phenomena and offers a near-free launch in pragmatic abilities without compromising general capabilities. Lastly, we examine the internal structure of LLMs, revealing that the significant boost in pragmatic reasoning is tied to deeper layer representations, analogous to human high-level thinking. Our experiments span a variety of pragmatic and social reasoning datasets, as well as an image referential game requiring a multimodal theory of mind (ToM). With our refined paradigms for evaluating and enhancing pragmatic inference, this paper offers key insights into building more socially aware language models.
2023
DiffuVST: Narrating Fictional Scenes with Global-History-Guided Denoising Models
Shengguang Wu
|
Mei Yuan
|
Qi Su
Findings of the Association for Computational Linguistics: EMNLP 2023
Recent advances in image and video creation, especially AI-based image synthesis, have led to the production of numerous visual scenes that exhibit a high level of abstractness and diversity. Consequently, Visual Storytelling (VST), a task that involves generating meaningful and coherent narratives from a collection of images, has become even more challenging and is increasingly desired beyond real-world imagery. While existing VST techniques, which typically use autoregressive decoders, have made significant progress, they suffer from low inference speed and are not well-suited for synthetic scenes. To this end, we propose a novel diffusion-based system DiffuVST, which models the generation of a series of visual descriptions as a single conditional denoising process. The stochastic and non-autoregressive nature of DiffuVST at inference time allows it to generate highly diverse narratives more efficiently. In addition, DiffuVST features a unique design with bi-directional text history guidance and multimodal adapter modules, which effectively improve inter-sentence coherence and image-to-text fidelity. Extensive experiments on the story generation task covering four fictional visual-story datasets demonstrate the superiority of DiffuVST over traditional autoregressive models in terms of both text quality and inference speed.