Shengyu Mao


2024

pdf bib
EasyEdit: An Easy-to-use Knowledge Editing Framework for Large Language Models
Peng Wang | Ningyu Zhang | Bozhong Tian | Zekun Xi | Yunzhi Yao | Ziwen Xu | Mengru Wang | Shengyu Mao | Xiaohan Wang | Siyuan Cheng | Kangwei Liu | Yuansheng Ni | Guozhou Zheng | Huajun Chen
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)

Large Language Models (LLMs) usually suffer from knowledge cutoff or fallacy issues, which means they are unaware of unseen events or generate text with incorrect facts owing to outdated/noisy data. To this end, many knowledge editing approaches for LLMs have emerged – aiming to subtly inject/edit updated knowledge or adjust undesired behavior while minimizing the impact on unrelated inputs. Nevertheless, due to significant differences among various knowledge editing methods and the variations in task setups, there is no standard implementation framework available for the community, which hinders practitioners from applying knowledge editing to applications. To address these issues, we propose EasyEdit, an easy-to-use knowledge editing framework for LLMs. It supports various cutting-edge knowledge editing approaches and can be readily applied to many well-known LLMs such as T5, GPT-J, LlaMA, etc. Empirically, we report the knowledge editing results on LlaMA-2 with EasyEdit, demonstrating that knowledge editing surpasses traditional fine-tuning in terms of reliability and generalization. We have released the source code on GitHub, along with Google Colab tutorials and comprehensive documentation for beginners to get started. Besides, we present an online system for real-time knowledge editing, and a demo video.

pdf bib
Effective Demonstration Annotation for In-Context Learning via Language Model-Based Determinantal Point Process
Peng Wang | Xiaobin Wang | Chao Lou | Shengyu Mao | Pengjun Xie | Yong Jiang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

In-context learning (ICL) is a few-shot learning paradigm that involves learning mappings through input-output pairs and appropriately applying them to new instances. Despite the remarkable ICL capabilities demonstrated by Large Language Models (LLMs), existing works are highly dependent on large-scale labeled support sets, not always feasible in practical scenarios. To refine this approach, we focus primarily on an innovative selective annotation mechanism, which precedes the standard demonstration retrieval. We introduce the Language Model-based Determinant Point Process (LM-DPP) that simultaneously considers the uncertainty and diversity of unlabeled instances for optimal selection. Consequently, this yields a subset for annotation that strikes a trade-off between the two factors. We apply LM-DPP to various language models, including GPT-J, LlaMA, and GPT-3. Experimental results on 9 NLU and 2 Generation datasets demonstrate that LM-DPP can effectively select canonical examples. Further analysis reveals that LLMs benefit most significantly from subsets that are both low uncertainty and high diversity.

pdf bib
Editing Conceptual Knowledge for Large Language Models
Xiaohan Wang | Shengyu Mao | Shumin Deng | Yunzhi Yao | Yue Shen | Lei Liang | Jinjie Gu | Huajun Chen | Ningyu Zhang
Findings of the Association for Computational Linguistics: EMNLP 2024

Recently, there has been a growing interest in knowledge editing for Large Language Models (LLMs). Current approaches and evaluations merely explore the instance-level editing, while whether LLMs possess the capability to modify concepts remains unclear. This paper pioneers the investigation of editing conceptual knowledge for LLMs, by constructing a novel benchmark dataset ConceptEdit and establishing a suite of new metrics for evaluation. The experimental results reveal that, although existing editing methods can efficiently modify concept-level definition to some extent, they also have the potential to distort the related instantial knowledge in LLMs, leading to poor performance. We anticipate this work can inspire further progress in understanding LLMs.

pdf bib
RaFe: Ranking Feedback Improves Query Rewriting for RAG
Shengyu Mao | Yong Jiang | Boli Chen | Xiao Li | Peng Wang | Xinyu Wang | Pengjun Xie | Fei Huang | Huajun Chen | Ningyu Zhang
Findings of the Association for Computational Linguistics: EMNLP 2024

As Large Language Models (LLMs) and Retrieval Augmentation Generation (RAG) techniques have evolved, query rewriting has been widely incorporated into the RAG system for downstream tasks like open-domain QA to enhance document retrieval by reformulating queries. Many works have attempted to improve query rewriting in smaller models to avoid rewriting with costly LLMs, and the most common method is to employ reinforcement learning for feedback training. However, current methods require annotations (labeled relevant documents or downstream answers) or predesigned rewards for feedback, lack generalization, and fail to utilize signals tailored for query rewriting. In this paper, we propose RaFe, a framework for training query rewriting models. By leveraging reranker, RaFe provides ranking feedback aligned well with the rewriting objectives without needing signals from annotations and supports both online and offline training models. Experimental results demonstrate that with a general and publicly available reranker, RaFe can effectively steer the training for rewrite models.

2023

pdf bib
SPEECH: Structured Prediction with Energy-Based Event-Centric Hyperspheres
Shumin Deng | Shengyu Mao | Ningyu Zhang | Bryan Hooi
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Event-centric structured prediction involves predicting structured outputs of events. In most NLP cases, event structures are complex with manifold dependency, and it is challenging to effectively represent these complicated structured events. To address these issues, we propose Structured Prediction with Energy-based Event-Centric Hyperspheres (SPEECH). SPEECH models complex dependency among event structured components with energy-based modeling, and represents event classes with simple but effective hyperspheres. Experiments on two unified-annotated event datasets indicate that SPEECH is predominant in event detection and event-relation extraction tasks.

pdf bib
Knowledge Rumination for Pre-trained Language Models
Yunzhi Yao | Peng Wang | Shengyu Mao | Chuanqi Tan | Fei Huang | Huajun Chen | Ningyu Zhang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Previous studies have revealed that vanilla pre-trained language models (PLMs) lack the capacity to handle knowledge-intensive NLP tasks alone; thus, several works have attempted to integrate external knowledge into PLMs. However, despite the promising outcome, we empirically observe that PLMs may have already encoded rich knowledge in their pre-trained parameters but fails to fully utilize them when applying to knowledge-intensive tasks. In this paper, we propose a new paradigm dubbed Knowledge Rumination to help the pre-trained language model utilize that related latent knowledge without retrieving them from the external corpus. By simply adding a prompt like “As far as I know” to the PLMs, we try to review related latent knowledge and inject them back into the model for knowledge consolidation. We apply the proposed knowledge rumination to various language models, including RoBERTa, DeBERTa, and GPT-3. Experimental results on six commonsense reasoning tasks and GLUE benchmarks demonstrate the effectiveness of our proposed approach, which proves that the knowledge stored in PLMs can be better exploited to enhance performance.