Teaching large language models (LLMs) to generate text with attribution to evidence sources can reduce hallucinations, improve verifiability in question answering systems (QA), and increase reliability of retrieval augmented LLMs. Despite gaining increasing popularity for usage in QA systems and search engines, current LLMs struggle with attribution for long-form responses which require reasoning over multiple evidence sources. To address this, in this paper we aim to improve the attribution capability of LLMs for long-form answer generation to multiple sources, with multiple citations per sentence. However, data for training multi-source attributable QA systems is difficult and expensive to annotate, and therefore scarce. To overcome this challenge, we transform existing QA datasets for this task (MultiAttr), and empirically demonstrate, on a wide range of attribution benchmark datasets, that fine-tuning on MultiAttr provides significant improvements over training only on the target QA domain. Lastly, to fill a gap in existing benchmarks, we present a multi-source attribution dataset containing multi-paragraph answers, PolitiICite, based on PolitiFact articles that discuss events closely related to implementation statuses of election promises.
Class imbalance is a common challenge in many NLP tasks, and has clear connections to bias, in that bias in training data often leads to higher accuracy for majority groups at the expense of minority groups. However there has traditionally been a disconnect between research on class-imbalanced learning and mitigating bias, and only recently have the two been looked at through a common lens. In this work we evaluate long-tail learning methods for tweet sentiment and occupation classification, and extend a margin-loss based approach with methods to enforce fairness. We empirically show through controlled experiments that the proposed approaches help mitigate both class imbalance and demographic biases.
Bias is pervasive for NLP models, motivating the development of automatic debiasing techniques. Evaluation of NLP debiasing methods has largely been limited to binary attributes in isolation, e.g., debiasing with respect to binary gender or race, however many corpora involve multiple such attributes, possibly with higher cardinality. In this paper we argue that a truly fair model must consider ‘gerrymandering’ groups which comprise not only single attributes, but also intersectional groups. We evaluate a form of bias-constrained model which is new to NLP, as well an extension of the iterative nullspace projection technique which can handle multiple identities.
Online petitions offer a mechanism for peopleto initiate a request for change and gather sup-port from others to demonstrate support for thecause. In this work, we model the task of peti-tion popularity using both text and image rep-resentations across four different languages,and including petition metadata. We evaluateour proposed approach using a dataset of 75kpetitions from Avaaz.org, and find strong com-plementarity between text and images.
We study pragmatics in political campaign text, through analysis of speech acts and the target of each utterance. We propose a new annotation schema incorporating domain-specific speech acts, such as commissive-action, and present a novel annotated corpus of media releases and speech transcripts from the 2016 Australian election cycle. We show how speech acts and target referents can be modeled as sequential classification, and evaluate several techniques, exploiting contextualized word representations, semi-supervised learning, task dependencies and speaker meta-data.
Many pledges are made in the course of an election campaign, forming important corpora for political analysis of campaign strategy and governmental accountability. At present, there are no publicly available annotated datasets of pledges, and most political analyses rely on manual annotations. In this paper we collate a novel dataset of manifestos from eleven Australian federal election cycles, with over 12,000 sentences annotated with specificity (e.g., rhetorical vs detailed pledge) on a fine-grained scale. We propose deep ordinal regression approaches for specificity prediction, under both supervised and semi-supervised settings, and provide empirical results demonstrating the effectiveness of the proposed techniques over several baseline approaches. We analyze the utility of pledge specificity modeling across a spectrum of policy issues in performing ideology prediction, and further provide qualitative analysis in terms of capturing party-specific issue salience across election cycles.
Election manifestos document the intentions, motives, and views of political parties. They are often used for analysing a party’s fine-grained position on a particular issue, as well as for coarse-grained positioning of a party on the left–right spectrum. In this paper we propose a two-stage model for automatically performing both levels of analysis over manifestos. In the first step we employ a hierarchical multi-task structured deep model to predict fine- and coarse-grained positions, and in the second step we perform post-hoc calibration of coarse-grained positions using probabilistic soft logic. We empirically show that the proposed model outperforms state-of-art approaches at both granularities using manifestos from twelve countries, written in ten different languages.
Online petitions are a cost-effective way for citizens to collectively engage with policy-makers in a democracy. Predicting the popularity of a petition — commonly measured by its signature count — based on its textual content has utility for policymakers as well as those posting the petition. In this work, we model this task using CNN regression with an auxiliary ordinal regression objective. We demonstrate the effectiveness of our proposed approach using UK and US government petition datasets.