Shunyu Liu
2024
A Regularization-based Transfer Learning Method for Information Extraction via Instructed Graph Decoder
Kedi Chen
|
Jie Zhou
|
Qin Chen
|
Shunyu Liu
|
Liang He
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Information extraction (IE) aims to extract complex structured information from the text. Numerous datasets have been constructed for various IE tasks, leading to time-consuming and labor-intensive data annotations. Nevertheless, most prevailing methods focus on training task-specific models, while the common knowledge among different IE tasks is not explicitly modeled. Moreover, the same phrase may have inconsistent labels in different tasks, which poses a big challenge for knowledge transfer using a unified model. In this study, we propose a regularization-based transfer learning method for IE (TIE) via an instructed graph decoder. Specifically, we first construct an instruction pool for datasets from all well-known IE tasks, and then present an instructed graph decoder, which decodes various complex structures into a graph uniformly based on corresponding instructions. In this way, the common knowledge shared with existing datasets can be learned and transferred to a new dataset with new labels. Furthermore, to alleviate the label inconsistency problem among various IE tasks, we introduce a task-specific regularization strategy, which does not update the gradients of two tasks with ‘opposite direction’. We conduct extensive experiments on 12 datasets spanning four IE tasks, and the results demonstrate the great advantages of our proposed method.
Let’s Rectify Step by Step: Improving Aspect-based Sentiment Analysis with Diffusion Models
Shunyu Liu
|
Jie Zhou
|
Qunxi Zhu
|
Qin Chen
|
Qingchun Bai
|
Jun Xiao
|
Liang He
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Aspect-Based Sentiment Analysis (ABSA) stands as a crucial task in predicting the sentiment polarity associated with identified aspects within text. However, a notable challenge in ABSA lies in precisely determining the aspects’ boundaries (start and end indices), especially for long ones, due to users’ colloquial expressions. We propose DiffusionABSA, a novel diffusion model tailored for ABSA, which extracts the aspects progressively step by step. Particularly, DiffusionABSA gradually adds noise to the aspect terms in the training process, subsequently learning a denoising process that progressively restores these terms in a reverse manner. To estimate the boundaries, we design a denoising neural network enhanced by a syntax-aware temporal attention mechanism to chronologically capture the interplay between aspects and surrounding text. Empirical evaluations conducted on eight benchmark datasets underscore the compelling advantages offered by DiffusionABSA when compared against robust baseline models. Our code is publicly available at https://github.com/Qlb6x/DiffusionABSA.