Shuo Xie


2025

pdf bib
MPPO: Multi Pair-wise Preference Optimization for LLMs with Arbitrary Negative Samples
Shuo Xie | Fangzhi Zhu | Jiahui Wang | Lulu Wen | Wei Dai | Xiaowei Chen | Junxiong Zhu | Kai Zhou | Bo Zheng
Proceedings of the 31st International Conference on Computational Linguistics

Aligning Large Language Models (LLMs) with human feedback is crucial for their development. Existing preference optimization methods such as DPO and KTO, while improved based on Reinforcement Learning from Human Feedback (RLHF), are inherently derived from PPO, requiring a reference model that adds GPU memory resources and relies heavily on abundant preference data. Meanwhile, current preference optimization research mainly targets single-question scenarios with two replies, neglecting optimization with multiple replies, which leads to a waste of data in the application. This study introduces the MPPO algorithm, which leverages the average likelihood of model responses to fit the reward function and maximizes the utilization of preference data. Through a comparison of Point-wise, Pair-wise, and List-wise implementations, we found that the Pair-wise approach achieves the best performance, significantly enhancing the quality of model responses. Experimental results demonstrate MPPO’s outstanding performance across various benchmarks. On MT-Bench, MPPO outperforms DPO, ORPO, and SimPO. Notably, on Arena-Hard, MPPO surpasses DPO and ORPO by substantial margins. These achievements underscore the remarkable advantages of MPPO in preference optimization tasks.

2022

pdf bib
Hidden State Variability of Pretrained Language Models Can Guide Computation Reduction for Transfer Learning
Shuo Xie | Jiahao Qiu | Ankita Pasad | Li Du | Qing Qu | Hongyuan Mei
Findings of the Association for Computational Linguistics: EMNLP 2022

While transferring a pretrained language model, common approaches conventionally attach their task-specific classifiers to the top layer and adapt all the pretrained layers. We investigate whether one could make a task-specific selection on which subset of the layers to adapt and where to place the classifier. The goal is to reduce the computation cost of transfer learning methods (e.g. fine-tuning or adapter-tuning) without sacrificing its performance.We propose to select layers based on the variability of their hidden states given a task-specific corpus. We say a layer is already “well-specialized” in a task if the within-class variability of its hidden states is low relative to the between-class variability. Our variability metric is cheap to compute and doesn’t need any training or hyperparameter tuning. It is robust to data imbalance and data scarcity. Extensive experiments on the GLUE benchmark demonstrate that selecting layers based on our metric can yield significantly stronger performance than using the same number of top layers and often match the performance of fine-tuning or adapter-tuning the entire language model.