Large language models (LLMs) have exhibited remarkable few-shot learning capabilities and unified the paradigm of NLP tasks through the in-context learning (ICL) technique. Despite the success of ICL, the quality of the exemplar demonstrations can significantly influence the LLM’s performance. Existing exemplar selection methods mainly focus on the semantic similarity between queries and candidate exemplars. On the other hand, the logical connections between reasoning steps can also be beneficial to depict the problem-solving process. This paper proposes a novel method named Reasoning Graph-enhanced Exemplar Retrieval (RGER). RGER first queries LLM to generate an initial response and then expresses intermediate problem-solving steps to a graph structure. After that, it employs a graph kernel to select exemplars with semantic and structural similarity. Extensive experiments demonstrate the structural relationship is helpful to the alignment of queries and candidate exemplars. The efficacy of RGER on mathematics and logical reasoning tasks showcases its superiority over state-of-the-art retrieval-based approaches.
Ensuring robustness is especially important when AI is deployed in responsible or safety-critical environments. ChatGPT can perform brilliantly in both adversarial and out-of-distribution (OOD) robustness, while other popular large language models (LLMs), like LLaMA-2, ERNIE and ChatGLM, do not perform satisfactorily in this regard. Therefore, it is valuable to study what efforts play essential roles in ChatGPT, and how to transfer these efforts to other LLMs. This paper experimentally finds that linguistic rule induction is the foundation for identifying the cause-effect relationships in LLMs. For LLMs, accurately processing the cause-effect relationships improves its adversarial and OOD robustness. Furthermore, we explore a low-cost way for aligning LLMs with linguistic rules. Specifically, we constructed a linguistic rule instruction dataset to fine-tune LLMs. To further energize LLMs for reasoning step-by-step with the linguistic rule, we construct the task-relevant LingR-based chain-of-thoughts. Experiments showed that LingR-induced LLaMA-13B achieves comparable or better results with GPT-3.5 and GPT-4 on various adversarial and OOD robustness evaluations.
Graph convolutional network (GCN) has become popular in various natural language processing (NLP) tasks with its superiority in long-term and non-consecutive word interactions. However, existing single-hop graph reasoning in GCN may miss some important non-consecutive dependencies. In this study, we define the spectral graph convolutional network with the high-order dynamic Chebyshev approximation (HDGCN), which augments the multi-hop graph reasoning by fusing messages aggregated from direct and long-term dependencies into one convolutional layer. To alleviate the over-smoothing in high-order Chebyshev approximation, a multi-vote-based cross-attention (MVCAttn) with linear computation complexity is also proposed. The empirical results on four transductive and inductive NLP tasks and the ablation study verify the efficacy of the proposed model.