2024
pdf
bib
abs
Expanding Russian PropBank: Challenges and Insights for Developing New SRL Resources
Skatje Myers
|
Roman Khamov
|
Adam Pollins
|
Rebekah Tozier
|
Olga Babko-Malaya
|
Martha Palmer
Proceedings of the Fifth International Workshop on Designing Meaning Representations @ LREC-COLING 2024
Semantic role labeling (SRL) resources, such as Proposition Bank (PropBank), provide useful input to downstream applications. In this paper we present some challenges and insights we learned while expanding the previously developed Russian PropBank. This new effort involved annotation and adjudication of all predicates within a subset of the prior work in order to provide a test corpus for future applications. We discuss a number of new issues that arose while developing our PropBank for Russian as well as our solutions. Framing issues include: distinguishing between morphological processes that warrant new frames, differentiating between modal verbs and predicate verbs, and maintaining accurate representations of a given language’s semantics. Annotation issues include disagreements derived from variability in Universal Dependency parses and semantic ambiguity within the text. Finally, we demonstrate how Russian sentence structures reveal inherent limitations to PropBank’s ability to capture semantic data. These discussions should prove useful to anyone developing a PropBank or similar SRL resources for a new language.
pdf
bib
abs
When Raw Data Prevails: Are Large Language Model Embeddings Effective in Numerical Data Representation for Medical Machine Learning Applications?
Yanjun Gao
|
Skatje Myers
|
Shan Chen
|
Dmitriy Dligach
|
Timothy A Miller
|
Danielle Bitterman
|
Matthew Churpek
|
Majid Afshar
Findings of the Association for Computational Linguistics: EMNLP 2024
The introduction of Large Language Models (LLMs) has advanced data representation and analysis, bringing significant progress in their use for medical questions and answering. Despite these advancements, integrating tabular data, especially numerical data pivotal in clinical contexts, into LLM paradigms has not been thoroughly explored. In this study, we examine the effectiveness of vector representations from last hidden states of LLMs for medical diagnostics and prognostics using electronic health record (EHR) data. We compare the performance of these embeddings with that of raw numerical EHR data when used as feature inputs to traditional machine learning (ML) algorithms that excel at tabular data learning, such as eXtreme Gradient Boosting. We focus on instruction-tuned LLMs in a zero-shot setting to represent abnormal physiological data and evaluating their utilities as feature extractors to enhance ML classifiers for predicting diagnoses, length of stay, and mortality. Furthermore, we examine prompt engineering techniques on zero-shot and few-shot LLM embeddings to measure their impact comprehensively. Although findings suggest the raw data features still prevail in medical ML tasks, zero-shot LLM embeddings demonstrate competitive results, suggesting a promising avenue for future research in medical applications.
pdf
bib
abs
Building a Broad Infrastructure for Uniform Meaning Representations
Julia Bonn
|
Matthew J. Buchholz
|
Jayeol Chun
|
Andrew Cowell
|
William Croft
|
Lukas Denk
|
Sijia Ge
|
Jan Hajič
|
Kenneth Lai
|
James H. Martin
|
Skatje Myers
|
Alexis Palmer
|
Martha Palmer
|
Claire Benet Post
|
James Pustejovsky
|
Kristine Stenzel
|
Haibo Sun
|
Zdeňka Urešová
|
Rosa Vallejos
|
Jens E. L. Van Gysel
|
Meagan Vigus
|
Nianwen Xue
|
Jin Zhao
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
This paper reports the first release of the UMR (Uniform Meaning Representation) data set. UMR is a graph-based meaning representation formalism consisting of a sentence-level graph and a document-level graph. The sentence-level graph represents predicate-argument structures, named entities, word senses, aspectuality of events, as well as person and number information for entities. The document-level graph represents coreferential, temporal, and modal relations that go beyond sentence boundaries. UMR is designed to capture the commonalities and variations across languages and this is done through the use of a common set of abstract concepts, relations, and attributes as well as concrete concepts derived from words from invidual languages. This UMR release includes annotations for six languages (Arapaho, Chinese, English, Kukama, Navajo, Sanapana) that vary greatly in terms of their linguistic properties and resource availability. We also describe on-going efforts to enlarge this data set and extend it to other genres and modalities. We also briefly describe the available infrastructure (UMR annotation guidelines and tools) that others can use to create similar data sets.
2023
pdf
bib
abs
UMR-Writer 2.0: Incorporating a New Keyboard Interface and Workflow into UMR-Writer
Sijia Ge
|
Jin Zhao
|
Kristin Wright-bettner
|
Skatje Myers
|
Nianwen Xue
|
Martha Palmer
Proceedings of the 17th Linguistic Annotation Workshop (LAW-XVII)
UMR-Writer is a web-based tool for annotating semantic graphs with the Uniform Meaning Representation (UMR) scheme. UMR is a graph-based semantic representation that can be applied cross-linguistically for deep semantic analysis of texts. In this work, we implemented a new keyboard interface in UMR-Writer 2.0, which is a powerful addition to the original mouse interface, supporting faster annotation for more experienced annotators. The new interface also addresses issues with the original mouse interface. Additionally, we demonstrate an efficient workflow for annotation project management in UMR-Writer 2.0, which has been applied to many projects.
pdf
bib
abs
Leveraging Active Learning to Minimise SRL Annotation Across Corpora
Skatje Myers
|
Martha Palmer
Proceedings of the 12th Joint Conference on Lexical and Computational Semantics (*SEM 2023)
In this paper we investigate the application of active learning to semantic role labeling (SRL) using Bayesian Active Learning by Disagreement (BALD). Our new predicate-focused selection method quickly improves efficiency on three different specialised domain corpora. This is encouraging news for researchers wanting to port SRL to domain specific applications. Interestingly, with the large and diverse \textit{OntoNotes} corpus, the sentence selection approach, that collects a larger number of predicates, taking more time to annotate, fares better than the predicate approach. In this paper, we analyze both the selections made by our two selections methods for the various domains and the differences between these corpora in detail.
pdf
bib
abs
Mapping AMR to UMR: Resources for Adapting Existing Corpora for Cross-Lingual Compatibility
Julia Bonn
|
Skatje Myers
|
Jens E. L. Van Gysel
|
Lukas Denk
|
Meagan Vigus
|
Jin Zhao
|
Andrew Cowell
|
William Croft
|
Jan Hajič
|
James H. Martin
|
Alexis Palmer
|
Martha Palmer
|
James Pustejovsky
|
Zdenka Urešová
|
Rosa Vallejos
|
Nianwen Xue
Proceedings of the 21st International Workshop on Treebanks and Linguistic Theories (TLT, GURT/SyntaxFest 2023)
This paper presents detailed mappings between the structures used in Abstract Meaning Representation (AMR) and those used in Uniform Meaning Representation (UMR). These structures include general semantic roles, rolesets, and concepts that are largely shared between AMR and UMR, but with crucial differences. While UMR annotation of new low-resource languages is ongoing, AMR-annotated corpora already exist for many languages, and these AMR corpora are ripe for conversion to UMR format. Rather than focusing on semantic coverage that is new to UMR (which will likely need to be dealt with manually), this paper serves as a resource (with illustrated mappings) for users looking to understand the fine-grained adjustments that have been made to the representation techniques for semantic categoriespresent in both AMR and UMR.
2022
pdf
bib
abs
PropBank Comes of Age—Larger, Smarter, and more Diverse
Sameer Pradhan
|
Julia Bonn
|
Skatje Myers
|
Kathryn Conger
|
Tim O’gorman
|
James Gung
|
Kristin Wright-bettner
|
Martha Palmer
Proceedings of the 11th Joint Conference on Lexical and Computational Semantics
This paper describes the evolution of the PropBank approach to semantic role labeling over the last two decades. During this time the PropBank frame files have been expanded to include non-verbal predicates such as adjectives, prepositions and multi-word expressions. The number of domains, genres and languages that have been PropBanked has also expanded greatly, creating an opportunity for much more challenging and robust testing of the generalization capabilities of PropBank semantic role labeling systems. We also describe the substantial effort that has gone into ensuring the consistency and reliability of the various annotated datasets and resources, to better support the training and evaluation of such systems
2021
pdf
bib
abs
Fine-grained Information Extraction from Biomedical Literature based on Knowledge-enriched Abstract Meaning Representation
Zixuan Zhang
|
Nikolaus Parulian
|
Heng Ji
|
Ahmed Elsayed
|
Skatje Myers
|
Martha Palmer
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
Biomedical Information Extraction from scientific literature presents two unique and non-trivial challenges. First, compared with general natural language texts, sentences from scientific papers usually possess wider contexts between knowledge elements. Moreover, comprehending the fine-grained scientific entities and events urgently requires domain-specific background knowledge. In this paper, we propose a novel biomedical Information Extraction (IE) model to tackle these two challenges and extract scientific entities and events from English research papers. We perform Abstract Meaning Representation (AMR) to compress the wide context to uncover a clear semantic structure for each complex sentence. Besides, we construct the sentence-level knowledge graph from an external knowledge base and use it to enrich the AMR graph to improve the model’s understanding of complex scientific concepts. We use an edge-conditioned graph attention network to encode the knowledge-enriched AMR graph for biomedical IE tasks. Experiments on the GENIA 2011 dataset show that the AMR and external knowledge have contributed 1.8% and 3.0% absolute F-score gains respectively. In order to evaluate the impact of our approach on real-world problems that involve topic-specific fine-grained knowledge elements, we have also created a new ontology and annotated corpus for entity and event extraction for the COVID-19 scientific literature, which can serve as a new benchmark for the biomedical IE community.
pdf
bib
abs
Tuning Deep Active Learning for Semantic Role Labeling
Skatje Myers
|
Martha Palmer
Proceedings of the 14th International Conference on Computational Semantics (IWCS)
Active learning has been shown to reduce annotation requirements for numerous natural language processing tasks, including semantic role labeling (SRL). SRL involves labeling argument spans for potentially multiple predicates in a sentence, which makes it challenging to aggregate the numerous decisions into a single score for determining new instances to annotate. In this paper, we apply two ways of aggregating scores across multiple predicates in order to choose query sentences with two methods of estimating model certainty: using the neural network’s outputs and using dropout-based Bayesian Active Learning by Disagreement. We compare these methods with three passive baselines — random sentence selection, random whole-document selection, and selecting sentences with the most predicates — and analyse the effect these strategies have on the learning curve with respect to reducing the number of annotated sentences and predicates to achieve high performance.
2020
pdf
bib
abs
The Russian PropBank
Sarah Moeller
|
Irina Wagner
|
Martha Palmer
|
Kathryn Conger
|
Skatje Myers
Proceedings of the Twelfth Language Resources and Evaluation Conference
This paper presents a proposition bank for Russian (RuPB), a resource for semantic role labeling (SRL). The motivating goal for this resource is to automatically project semantic role labels from English to Russian. This paper describes frame creation strategies, coverage, and the process of sense disambiguation. It discusses language-specific issues that complicated the process of building the PropBank and how these challenges were exploited as language-internal guidance for consistency and coherence.
2019
pdf
bib
abs
ClearTAC: Verb Tense, Aspect, and Form Classification Using Neural Nets
Skatje Myers
|
Martha Palmer
Proceedings of the First International Workshop on Designing Meaning Representations
This paper proposes using a Bidirectional LSTM-CRF model in order to identify the tense and aspect of verbs. The information that this classifier outputs can be useful for ordering events and can provide a pre-processing step to improve efficiency of annotating this type of information. This neural network architecture has been successfully employed for other sequential labeling tasks, and we show that it significantly outperforms the rule-based tool TMV-annotator on the Propbank I dataset.