Sougata Saha


2024

pdf bib
Turiya at DialAM-2024: Inference Anchoring Theory Based LLM Parsers
Sougata Saha | Rohini Srihari
Proceedings of the 11th Workshop on Argument Mining (ArgMining 2024)

Representing discourse as argument graphs facilitates robust analysis. Although computational frameworks for constructing graphs from monologues exist, there is a lack of frameworks for parsing dialogue. Inference Anchoring Theory (IAT) is a theoretical framework for extracting graphical argument structures and relationships from dialogues. Here, we introduce computational models for implementing the IAT framework for parsing dialogues. We experiment with a classification-based biaffine parser and Large Language Model (LLM)-based generative methods and compare them. Our results demonstrate the utility of finetuning LLMs for constructing IAT-based argument graphs from dialogues, which is a nuanced task.

pdf bib
Turiya at PerpectiveArg2024: A Multilingual Argument Retriever and Reranker
Sougata Saha | Rohini Srihari
Proceedings of the 11th Workshop on Argument Mining (ArgMining 2024)

While general argument retrieval systems have significantly matured, multilingual argument retrieval in a socio-cultural setting is an overlooked problem. Advancements in such systems are imperative to enhance the inclusivity of society. The Perspective Argument Retrieval (PAR) task addresses these aspects and acknowledges their potential latent influence on argumentation. Here, we present a multilingual retrieval system for PAR that accounts for societal diversity during retrieval. Our approach couples a retriever and a re-ranker and spans multiple languages, thus factoring in diverse socio-cultural settings. The performance of our end-to-end system on three distinct test sets testify to its robustness.

pdf bib
Integrating Argumentation and Hate-Speech-based Techniques for Countering Misinformation
Sougata Saha | Rohini Srihari
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

The proliferation of online misinformation presents a significant challenge, requiring scalable strategies for effective mitigation. While detection methods exist, current reactive approaches, like content flagging and banning, are short-term and insufficient. Additionally, advancements like large language models (LLMs) exacerbate the issue by enabling large-scale creation and dissemination of misinformation. Thus, sustainable, scalable solutions that encourage behavior change and broaden perspectives by persuading misinformants against their viewpoints or broadening their perspectives are needed. To this end, we propose persuasive LLM-based dialogue systems to tackle misinformation. However, challenges arise due to the lack of suitable datasets and formal frameworks for generating persuasive responses. Inspired by existing methods for countering online hate speech, we explore adapting counter-hate response strategies for misinformation. Since misinformation and hate speech often coexist despite differing intentions, we develop classifiers to identify and annotate response strategies from hate-speech counter-responses for use in misinformation scenarios. Human evaluations show a 91% agreement on the applicability of these strategies to misinformation. Next, as a scalable counter-misinformation solution, we create an LLM-based argument graph framework that generates persuasive responses, using the strategies as control codes to adjust the style and content. Human evaluations and case studies demonstrate that our framework generates expert-like responses and is 14% more engaging, 21% more natural, and 18% more factual than the best available alternatives.

2023

pdf bib
ArgU: A Controllable Factual Argument Generator
Sougata Saha | Rohini Srihari
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Effective argumentation is essential towards a purposeful conversation with a satisfactory outcome. For example, persuading someone to reconsider smoking might involve empathetic, well founded arguments based on facts and expert opinions about its ill-effects and the consequences on one’s family. However, the automatic generation of high-quality factual arguments can be challenging. Addressing existing controllability issues can make the recent advances in computational models for argument generation a potential solution. In this paper, we introduce ArgU: a neural argument generator capable of producing factual arguments from input facts and real-world concepts that can be explicitly controlled for stance and argument structure using Walton’s argument scheme-based control codes. Unfortunately, computational argument generation is a relatively new field and lacks datasets conducive to training. Hence, we have compiled and released an annotated corpora of 69,428 arguments spanning six topics and six argument schemes, making it the largest publicly available corpus for identifying argument schemes; the paper details our annotation and dataset creation framework. We further experiment with an argument generation strategy that establishes an inference strategy by generating an “argument template” before actual argument generation. Our results demonstrate that it is possible to automatically generate diverse arguments exhibiting different inference patterns for the same set of facts by using control codes based on argument schemes and stance.

pdf bib
Consolidating Strategies for Countering Hate Speech Using Persuasive Dialogues
Sougata Saha | Rohini Srihari
Proceedings of the 20th International Conference on Natural Language Processing (ICON)

Hateful comments are prevalent on social media platforms. Although tools for automatically detecting, flagging, and blocking such false, offensive, and harmful content online have lately matured, such reactive and brute force methods alone provide short-term and superficial remedies while the perpetrators persist. With the public availability of large language models which can generate articulate synthetic and engaging content at scale, there are concerns about the rapid growth of dissemination of such malicious content on the web. There is now a need to focus on deeper, long-term solutions that involve engaging with the human perpetrator behind the source of the content to change their viewpoint or at least bring down the rhetoric using persuasive means. To do that, we propose defining and experimenting with controllable strategies for generating counterarguments to hateful comments in online conversations. We experiment with controlling response generation using features based on (i) argument structure and reasoning-based Walton argument schemes, (ii) counter-argument speech acts, and (iii) human characteristicsbased qualities such as Big-5 personality traits and human values. Using automatic and human evaluations, we determine the best combination of features that generate fluent, argumentative, and logically sound arguments for countering hate. We further share the developed computational models for automatically annotating text with such features, and a silver-standard annotated version of an existing hate speech dialog corpora.

pdf bib
Rudolf Christoph Eucken at SemEval-2023 Task 4: An Ensemble Approach for Identifying Human Values from Arguments
Sougata Saha | Rohini Srihari
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)

The subtle human values we acquire through life experiences govern our thoughts and gets reflected in our speech. It plays an integral part in capturing the essence of our individuality and making it imperative to identify such values in computational systems that mimic human actions. Computational argumentation is a field that deals with the argumentation capabilities of humans and can benefit from identifying such values. Motivated by that, we present an ensemble approach for detecting human values from argument text. Our ensemble comprises three models: (i) An entailment-based model for determining the human values based on their descriptions, (ii) A Roberta-based classifier that predicts the set of human values from an argument. (iii) A Roberta-based classifier to predict a reduced set of human values from an argument. We experiment with different ways of combining the models and report our results. Furthermore, our best combination achieves an overall F1 score of 0.48 on the main test set.

2022

pdf bib
Proceedings of the 9th Workshop on Argument Mining
Gabriella Lapesa | Jodi Schneider | Yohan Jo | Sougata Saha
Proceedings of the 9th Workshop on Argument Mining

pdf bib
Proto-Gen: An end-to-end neural generator for persona and knowledge grounded response generation
Sougata Saha | Souvik Das | Rohini Srihari
Proceedings of the 1st Workshop on Customized Chat Grounding Persona and Knowledge

In this paper we detail the implementation of Proto-Gen, an end-to-end neural response generator capable of selecting appropriate persona and fact sentences from available options, and generating persona and fact grounded responses. Incorporating a novel interaction layer in an encoder-decoder architecture, Proto-Gen facilitates learning dependencies between facts, persona and the context, and outperforms existing baselines on the FoCus dataset for both the sub-tasks of persona and fact selection, and response generation. We further fine tune Proto-Gen’s hyperparameters, and share our results and findings.

pdf bib
Using Multi-Encoder Fusion Strategies to Improve Personalized Response Selection
Souvik Das | Sougata Saha | Rohini K. Srihari
Proceedings of the 29th International Conference on Computational Linguistics

Personalized response selection systems are generally grounded on persona. However, a correlation exists between persona and empathy, which these systems do not explore well. Also, when a contradictory or off-topic response is selected, faithfulness to the conversation context plunges. This paper attempts to address these issues by proposing a suite of fusion strategies that capture the interaction between persona, emotion, and entailment information of the utterances. Ablation studies on the Persona-Chat dataset show that incorporating emotion and entailment improves the accuracy of response selection. We combine our fusion strategies and concept-flow encoding to train a BERT-based model which outperforms the previous methods by margins larger than 2.3% on original personas and 1.9% on revised personas in terms of hits@1 (top-1 accuracy), achieving a new state-of-the-art performance on the Persona-Chat dataset

pdf bib
Dialo-AP: A Dependency Parsing Based Argument Parser for Dialogues
Sougata Saha | Souvik Das | Rohini K. Srihari
Proceedings of the 29th International Conference on Computational Linguistics

While neural approaches to argument mining (AM) have advanced considerably, most of the recent work has been limited to parsing monologues. With an urgent interest in the use of conversational agents for broader societal applications, there is a need to advance the state-of-the-art in argument parsers for dialogues. This enables progress towards more purposeful conversations involving persuasion, debate and deliberation. This paper discusses Dialo-AP, an end-to-end argument parser that constructs argument graphs from dialogues. We formulate AM as dependency parsing of elementary and argumentative discourse units; the system is trained using extensive pre-training and curriculum learning comprising nine diverse corpora. Dialo-AP is capable of generating argument graphs from dialogues by performing all sub-tasks of AM. Compared to existing state-of-the-art baselines, Dialo-AP achieves significant improvements across all tasks, which is further validated through rigorous human evaluation.

pdf bib
Diving Deep into Modes of Fact Hallucinations in Dialogue Systems
Souvik Das | Sougata Saha | Rohini Srihari
Findings of the Association for Computational Linguistics: EMNLP 2022

Knowledge Graph(KG) grounded conversations often use large pre-trained models and usually suffer from fact hallucination. Frequently entities with no references in knowledge sources and conversation history are introduced into responses, thus hindering the flow of the conversation—existing work attempt to overcome this issue by tweaking the training procedure or using a multi-step refining method. However, minimal effort is put into constructing an entity-level hallucination detection system, which would provide fine-grained signals that control fallacious content while generating responses. As a first step to address this issue, we dive deep to identify various modes of hallucination in KG-grounded chatbots through human feedback analysis. Secondly, we propose a series of perturbation strategies to create a synthetic dataset named FADE (FActual Dialogue Hallucination DEtection Dataset). Finally, we conduct comprehensive data analyses and create multiple baseline models for hallucination detection to compare against human-verified data and already established benchmarks.

pdf bib
Let’s Chat: Understanding User Expectations in Socialbot Interactions
Elizabeth Soper | Erin Pacquetet | Sougata Saha | Souvik Das | Rohini Srihari
Proceedings of the Second Workshop on Bridging Human--Computer Interaction and Natural Language Processing

This paper analyzes data from the 2021 Amazon Alexa Prize Socialbot Grand Challenge 4, in order to better understand the differences between human-computer interactions (HCI) in a socialbot setting and conventional human-to-human interactions. We find that because socialbots are a new genre of HCI, we are still negotiating norms to guide interactions in this setting. We present several notable patterns in user behavior toward socialbots, which have important implications for guiding future work in the development of conversational agents.

pdf bib
Similarity Based Label Smoothing For Dialogue Generation
Sougata Saha | Souvik Das | Rohini Srihari
Proceedings of the 19th International Conference on Natural Language Processing (ICON)

Generative neural conversational systems are typically trained by minimizing the entropy loss between the training “hard” targets and the predicted logits. Performance gains and improved generalization are often achieved by employing regularization techniques like label smoothing, which converts the training “hard” targets to soft targets. However, label smoothing enforces a data independent uniform distribution on the incorrect training targets, leading to a false assumption of equiprobability. In this paper, we propose and experiment with incorporating data-dependent word similarity-based weighing methods to transform the uniform distribution of the incorrect target probabilities in label smoothing to a more realistic distribution based on semantics. We introduce hyperparameters to control the incorrect target distribution and report significant performance gains over networks trained using standard label smoothing-based loss on two standard open-domain dialogue corpora.

pdf bib
Stylistic Response Generation by Controlling Personality Traits and Intent
Sougata Saha | Souvik Das | Rohini Srihari
Proceedings of the 4th Workshop on NLP for Conversational AI

Personality traits influence human actions and thoughts, which is manifested in day to day conversations. Although glimpses of personality traits are observable in existing open domain conversation corpora, leveraging generic language modelling for response generation overlooks the interlocutor idiosyncrasies, resulting in non-customizable personality agnostic responses. With the motivation of enabling stylistically configurable response generators, in this paper we experiment with end-to-end mechanisms to ground neural response generators based on both (i) interlocutor Big-5 personality traits, and (ii) discourse intent as stylistic control codes. Since most of the existing large scale open domain chat corpora do not include Big-5 personality traits and discourse intent, we employ automatic annotation schemes to enrich the corpora with noisy estimates of personality and intent annotations, and further assess the impact of using such features as control codes for response generation using automatic evaluation metrics, ablation studies and human judgement. Our experiments illustrate the effectiveness of this strategy resulting in improvements to existing benchmarks. Additionally, we yield two silver standard annotated corpora with intents and personality traits annotated, which can be of use to the research community.

pdf bib
EDU-AP: Elementary Discourse Unit based Argument Parser
Sougata Saha | Souvik Das | Rohini Srihari
Proceedings of the 23rd Annual Meeting of the Special Interest Group on Discourse and Dialogue

Neural approaches to end-to-end argument mining (AM) are often formulated as dependency parsing (DP), which relies on token-level sequence labeling and intricate post-processing for extracting argumentative structures from text. Although such methods yield reasonable results, operating solely with tokens increases the possibility of discontinuous and overly segmented structures due to minor inconsistencies in token level predictions. In this paper, we propose EDU-AP, an end-to-end argument parser, that alleviates such problems in dependency-based methods by exploiting the intrinsic relationship between elementary discourse units (EDUs) and argumentative discourse units (ADUs) and operates at both token and EDU level granularity. Further, appropriately using contextual information, along with optimizing a novel objective function during training, EDU-AP achieves significant improvements across all four tasks of AM compared to existing dependency-based methods.

pdf bib
UB Health Miners@SMM4H’22: Exploring Pre-processing Techniques To Classify Tweets Using Transformer Based Pipelines.
Roshan Khatri | Sougata Saha | Souvik Das | Rohini Srihari
Proceedings of The Seventh Workshop on Social Media Mining for Health Applications, Workshop & Shared Task

Here we discuss our implementation of two tasks in the Social Media Mining for Health Applications (SMM4H) 2022 shared tasks – classification, detection, and normalization of Adverse Events (AE) mentioned in English tweets (Task 1) and classification of English tweets self-reporting exact age (Task 4). We have explored different methods and models for binary classification, multi-class classification and named entity recognition (NER) for these tasks. We have also processed the provided dataset for noise, imbalance, and creative language expression from data. Using diverse NLP methods we classified tweets for mentions of adverse drug effects (ADEs) and self-reporting the exact age in the tweets. Further, extracted reactions from the tweets and normalized these adverse effects to a standard concept ID in the MedDRA vocabulary.

2020

pdf bib
Autobots Ensemble: Identifying and Extracting Adverse Drug Reaction from Tweets Using Transformer Based Pipelines
Sougata Saha | Souvik Das | Prashi Khurana | Rohini Srihari
Proceedings of the Fifth Social Media Mining for Health Applications Workshop & Shared Task

This paper details a system designed for Social Media Mining for Health Applications (SMM4H) Shared Task 2020. We specifically describe the systems designed to solve task 2: Automatic classification of multilingual tweets that report adverse effects, and task 3: Automatic extraction and normalization of adverse effects in English tweets. Fine tuning RoBERTa large for classifying English tweets enables us to achieve a F1 score of 56%, which is an increase of +10% compared to the average F1 score for all the submissions. Using BERT based NER and question answering, we are able to achieve a F1 score of 57.6% for extracting adverse reaction mentions from tweets, which is an increase of +1.2% compared to the average F1 score for all the submissions.