Taehwan Kwon
2023
Efficient Latent Variable Modeling for Knowledge-Grounded Dialogue Generation
Gunsoo Han
|
Daejin Jo
|
Daniel Nam
|
Eunseop Yoon
|
Taehwan Kwon
|
Seungeun Rho
|
Kyoung-Woon On
|
Chang Yoo
|
Sungwoong Kim
Findings of the Association for Computational Linguistics: EMNLP 2023
Knowledge-grounded dialogue generation requires first retrieving appropriate external knowledge based on a conversational context and then generating a response grounded on the retrieved knowledge. In general, these two sequential modules, a knowledge retriever and a response generator, have been separately trained in a supervised manner. However, obtaining intermediate labels of the ground-truth knowledge is expensive, especially in open-domain conversations. Latent variable modeling avoids this need for the labels. In this paper, we propose an efficient algorithm for this latent variable modeling that is able to leverage a large amount of dialogue data. Rather than directly training the complex retriever, we adapt a query generator with an off-the-shelf retriever, and the query generator and response generator are simultaneously trained over the latent variable of query. Moreover, we employ lower bound of the evidence as a training objective and modify it to robustly perform the joint training. Experimental results on diverse knowledge-grounded dialogue datasets show that the proposed algorithm significantly outperforms the supervised learning algorithm even without the use of the annotated knowledge while maintaining efficiency and scalability.
2022
Selective Token Generation for Few-shot Natural Language Generation
Daejin Jo
|
Taehwan Kwon
|
Eun-Sol Kim
|
Sungwoong Kim
Proceedings of the 29th International Conference on Computational Linguistics
Natural language modeling with limited training data is a challenging problem, and many algorithms make use of large-scale pretrained language models (PLMs) for this due to its great generalization ability. Among them, additive learning that incorporates a task-specific adapter on top of the fixed large-scale PLM has been popularly used in the few-shot setting. However, this added adapter is still easy to disregard the knowledge of the PLM especially for few-shot natural language generation (NLG) since an entire sequence is usually generated by only the newly trained adapter. Therefore, in this work, we develop a novel additive learning algorithm based on reinforcement learning (RL) that selectively outputs language tokens between the task-general PLM and the task-specific adapter during both training and inference. This output token selection over the two generators allows the adapter to take into account solely the task-relevant parts in sequence generation, and therefore makes it more robust to overfitting as well as more stable in RL training. In addition, to obtain the complementary adapter from the PLM for each few-shot task, we exploit a separate selecting module that is also simultaneously trained using RL. Experimental results on various few-shot NLG tasks including question answering, data-to-text generation and text summarization demonstrate that the proposed selective token generation significantly outperforms the previous additive learning algorithms based on the PLMs.
Search
Co-authors
- Daejin Jo 2
- Sungwoong Kim 2
- Gunsoo Han 1
- Daniel Nam 1
- Eunseop Yoon 1
- show all...