Taoran Ji
2024
Don’t Go To Extremes: Revealing the Excessive Sensitivity and Calibration Limitations of LLMs in Implicit Hate Speech Detection
Min Zhang
|
Jianfeng He
|
Taoran Ji
|
Chang-Tien Lu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
The fairness and trustworthiness of Large Language Models (LLMs) are receiving increasing attention. Implicit hate speech, which employs indirect language to convey hateful intentions, occupies a significant portion of practice. However, the extent to which LLMs effectively address this issue remains insufficiently examined. This paper delves into the capability of LLMs to detect implicit hate speech and express confidence in their responses. Our evaluation meticulously considers various prompt patterns and mainstream uncertainty estimation methods. Our findings highlight that LLMs exhibit two extremes: (1) LLMs display excessive sensitivity towards groups or topics that may cause fairness issues, resulting in misclassifying benign statements as hate speech. (2) LLMs’ confidence scores for each method excessively concentrate on a fixed range, remaining unchanged regardless of the dataset’s complexity. Consequently, the calibration performance is heavily reliant on primary classification accuracy. These discoveries unveil new limitations of LLMs, underscoring the need for caution when optimizing models to ensure they do not veer towards extremes. This serves as a reminder to carefully consider sensitivity and confidence in the pursuit of model fairness.
AMA-LSTM: Pioneering Robust and Fair Financial Audio Analysis for Stock Volatility Prediction
Shengkun Wang
|
Taoran Ji
|
Jianfeng He
|
Mariam ALMutairi
|
Dan Wang
|
Linhan Wang
|
Min Zhang
|
Chang-Tien Lu
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 6: Industry Track)
Stock volatility prediction is an important task in the financial industry. Recent multimodal methods have shown advanced results by combining text and audio information, such as earnings calls. However, these multimodal methods have faced two drawbacks. First, they often fail to yield reliable models and overfit the data due to their absorption of stochastic information from the stock market. Moreover, using multimodal models to predict stock volatility suffers from gender bias and lacks an efficient way to eliminate such bias. To address these aforementioned problems, we use adversarial training to generate perturbations that simulate the inherent stochasticity and bias, by creating areas resistant to random information around the input space to improve model robustness and fairness. Our comprehensive experiments on two real-world financial audio datasets reveal that this method exceeds the performance of current state-of-the-art solution. This confirms the value of adversarial training in reducing stochasticity and bias for stock volatility prediction tasks.
Search
Fix data
Co-authors
- Jianfeng He 2
- Chang-Tien Lu 2
- Min Zhang (张民) 2
- Mariam ALMutairi 1
- Shengkun Wang 1
- show all...