Tatiana Shavrina


2024

pdf bib
Proceedings of the 3rd Workshop on NLP Applications to Field Linguistics (Field Matters 2024)
Oleg Serikov | Ekaterina Voloshina | Anna Postnikova | Saliha Muradoglu | Eric Le Ferrand | Elena Klyachko | Ekaterina Vylomova | Tatiana Shavrina | Francis Tyers
Proceedings of the 3rd Workshop on NLP Applications to Field Linguistics (Field Matters 2024)

pdf bib
Super donors and super recipients: Studying cross-lingual transfer between high-resource and low-resource languages
Vitaly Protasov | Elisei Stakovskii | Ekaterina Voloshina | Tatiana Shavrina | Alexander Panchenko
Proceedings of the Seventh Workshop on Technologies for Machine Translation of Low-Resource Languages (LoResMT 2024)

Despite the increasing popularity of multilingualism within the NLP community, numerous languages continue to be underrepresented due to the lack of available resources.Our work addresses this gap by introducing experiments on cross-lingual transfer between 158 high-resource (HR) and 31 low-resource (LR) languages.We mainly focus on extremely LR languages, some of which are first presented in research works.Across 158*31 HR–LR language pairs, we investigate how continued pretraining on different HR languages affects the mT5 model’s performance in representing LR languages in the LM setup.Our findings surprisingly reveal that the optimal language pairs with improved performance do not necessarily align with direct linguistic motivations, with subtoken overlap playing a more crucial role. Our investigation indicates that specific languages tend to be almost universally beneficial for pretraining (super donors), while others benefit from pretraining with almost any language (super recipients). This pattern recurs in various setups and is unrelated to the linguistic similarity of HR-LR pairs.Furthermore, we perform evaluation on two downstream tasks, part-of-speech (POS) tagging and machine translation (MT), showing how HR pretraining affects LR language performance.

pdf bib
A Family of Pretrained Transformer Language Models for Russian
Dmitry Zmitrovich | Aleksandr Abramov | Andrey Kalmykov | Vitaly Kadulin | Maria Tikhonova | Ekaterina Taktasheva | Danil Astafurov | Mark Baushenko | Artem Snegirev | Tatiana Shavrina | Sergei S. Markov | Vladislav Mikhailov | Alena Fenogenova
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Transformer language models (LMs) are fundamental to NLP research methodologies and applications in various languages. However, developing such models specifically for the Russian language has received little attention. This paper introduces a collection of 13 Russian Transformer LMs, which spans encoder (ruBERT, ruRoBERTa, ruELECTRA), decoder (ruGPT-3), and encoder-decoder (ruT5, FRED-T5) architectures. We provide a report on the model architecture design and pretraining, and the results of evaluating their generalization abilities on Russian language understanding and generation datasets and benchmarks. By pretraining and releasing these specialized Transformer LMs, we aim to broaden the scope of the NLP research directions and enable the development of industrial solutions for the Russian language.

pdf bib
mGPT: Few-Shot Learners Go Multilingual
Oleh Shliazhko | Alena Fenogenova | Maria Tikhonova | Anastasia Kozlova | Vladislav Mikhailov | Tatiana Shavrina
Transactions of the Association for Computational Linguistics, Volume 12

This paper introduces mGPT, a multilingual variant of GPT-3, pretrained on 61 languages from 25 linguistically diverse language families using Wikipedia and the C4 Corpus. We detail the design and pretraining procedure. The models undergo an intrinsic and extrinsic evaluation: language modeling in all languages, downstream evaluation on cross-lingual NLU datasets and benchmarks in 33 languages, and world knowledge probing in 23 languages. The in-context learning abilities are on par with the contemporaneous language models while covering a larger number of languages, including underrepresented and low-resource languages of the Commonwealth of Independent States and the indigenous peoples in Russia. The source code and the language models are publicly available under the MIT license.

2023

pdf bib
Vote’n’Rank: Revision of Benchmarking with Social Choice Theory
Mark Rofin | Vladislav Mikhailov | Mikhail Florinsky | Andrey Kravchenko | Tatiana Shavrina | Elena Tutubalina | Daniel Karabekyan | Ekaterina Artemova
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

The development of state-of-the-art systems in different applied areas of machine learning (ML) is driven by benchmarks, which have shaped the paradigm of evaluating generalisation capabilities from multiple perspectives. Although the paradigm is shifting towards more fine-grained evaluation across diverse tasks, the delicate question of how to aggregate the performances has received particular interest in the community. In general, benchmarks follow the unspoken utilitarian principles, where the systems are ranked based on their mean average score over task-specific metrics. Such aggregation procedure has been viewed as a sub-optimal evaluation protocol, which may have created the illusion of progress. This paper proposes Vote’n’Rank, a framework for ranking systems in multi-task benchmarks under the principles of the social choice theory. We demonstrate that our approach can be efficiently utilised to draw new insights on benchmarking in several ML sub-fields and identify the best-performing systems in research and development case studies. The Vote’n’Rank’s procedures are more robust than the mean average while being able to handle missing performance scores and determine conditions under which the system becomes the winner.

pdf bib
Proceedings of the Second Workshop on NLP Applications to Field Linguistics
Oleg Serikov | Ekaterina Voloshina | Anna Postnikova | Elena Klyachko | Ekaterina Vylomova | Tatiana Shavrina | Eric Le Ferrand | Valentin Malykh | Francis Tyers | Timofey Arkhangelskiy | Vladislav Mikhailov
Proceedings of the Second Workshop on NLP Applications to Field Linguistics

2022

pdf bib
Universal and Independent: Multilingual Probing Framework for Exhaustive Model Interpretation and Evaluation
Oleg Serikov | Vitaly Protasov | Ekaterina Voloshina | Viktoria Knyazkova | Tatiana Shavrina
Proceedings of the Fifth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP

Linguistic analysis of language models is one of the ways to explain and describe their reasoning, weaknesses, and limitations. In the probing part of the model interpretability research, studies concern individual languages as well as individual linguistic structures. The question arises: are the detected regularities linguistically coherent, or on the contrary, do they dissonate at the typological scale? Moreover, the majority of studies address the inherent set of languages and linguistic structures, leaving the actual typological diversity knowledge out of scope. In this paper, we present and apply the GUI-assisted framework allowing us to easily probe massive amounts of languages for all the morphosyntactic features present in the Universal Dependencies data. We show that reflecting the anglo-centric trend in NLP over the past years, most of the regularities revealed in the mBERT model are typical for the western-European languages. Our framework can be integrated with the existing probing toolboxes, model cards, and leaderboards, allowing practitioners to use and share their familiar probing methods to interpret multilingual models. Thus we propose a toolkit to systematize the multilingual flaws in multilingual models, providing a reproducible experimental setup for 104 languages and 80 morphosyntactic features.

pdf bib
Proceedings of the first workshop on NLP applications to field linguistics
Oleg Serikov | Ekaterina Voloshina | Anna Postnikova | Elena Klyachko | Ekaterina Neminova | Ekaterina Vylomova | Tatiana Shavrina | Eric Le Ferrand | Valentin Malykh | Francis Tyers | Timofey Arkhangelskiy | Vladislav Mikhailov | Alena Fenogenova
Proceedings of the first workshop on NLP applications to field linguistics

pdf bib
TAPE: Assessing Few-shot Russian Language Understanding
Ekaterina Taktasheva | Alena Fenogenova | Denis Shevelev | Nadezhda Katricheva | Maria Tikhonova | Albina Akhmetgareeva | Oleg Zinkevich | Anastasiia Bashmakova | Svetlana Iordanskaia | Valentina Kurenshchikova | Alena Spiridonova | Ekaterina Artemova | Tatiana Shavrina | Vladislav Mikhailov
Findings of the Association for Computational Linguistics: EMNLP 2022

Recent advances in zero-shot and few-shot learning have shown promise for a scope of research and practical purposes. However, this fast-growing area lacks standardized evaluation suites for non-English languages, hindering progress outside the Anglo-centric paradigm. To address this line of research, we propose TAPE (Text Attack and Perturbation Evaluation), a novel benchmark that includes six more complex NLU tasks for Russian, covering multi-hop reasoning, ethical concepts, logic and commonsense knowledge. The TAPE’s design focuses on systematic zero-shot and few-shot NLU evaluation: (i) linguistic-oriented adversarial attacks and perturbations for analyzing robustness, and (ii) subpopulations for nuanced interpretation. The detailed analysis of testing the autoregressive baselines indicates that simple spelling-based perturbations affect the performance the most, while paraphrasing the input has a more negligible effect. At the same time, the results demonstrate a significant gap between the neural and human baselines for most tasks. We publicly release TAPE (https://tape-benchmark.com) to foster research on robust LMs that can generalize to new tasks when little to no supervision is available.

pdf bib
WikiOmnia: filtration and evaluation of the generated QA corpus on the whole Russian Wikipedia
Dina Pisarevskaya | Tatiana Shavrina
Proceedings of the 2nd Workshop on Natural Language Generation, Evaluation, and Metrics (GEM)

The General QA field has been developing the methodology referencing the Stanford Question answering dataset (SQuAD) as the significant benchmark. Compiling factual questions datasets requires manual annotations, limiting the training data’s potential size. We present the WikiOmnia dataset, a new publicly available set of QA pairs and corresponding Russian Wikipedia article summary sections, composed with a fully automated generation and filtration pipeline. To ensure high quality of generated QA pairs, diverse manual and automated evaluation techniques were applied. The WikiOmnia pipeline is available open-source and is also tested for creating SQuAD-formatted QA on other domains, like news texts, fiction, and social media. The resulting dataset includes two parts: raw data on the whole Russian Wikipedia (7,930,873 QA pairs with paragraphs for ruGPT-3 XL and 7,991,040 QA pairs with paragraphs for ruT5-large) and cleaned data with strict automatic verification (over 160,000 QA pairs with paragraphs for ruGPT-3 XL and over 3,400,000 QA pairs with paragraphs for ruT5-large).

pdf bib
A Study on Manual and Automatic Evaluation for Text Style Transfer: The Case of Detoxification
Varvara Logacheva | Daryna Dementieva | Irina Krotova | Alena Fenogenova | Irina Nikishina | Tatiana Shavrina | Alexander Panchenko
Proceedings of the 2nd Workshop on Human Evaluation of NLP Systems (HumEval)

It is often difficult to reliably evaluate models which generate text. Among them, text style transfer is a particularly difficult to evaluate, because its success depends on a number of parameters. We conduct an evaluation of a large number of models on a detoxification task. We explore the relations between the manual and automatic metrics and find that there is only weak correlation between them, which is dependent on the type of model which generated text. Automatic metrics tend to be less reliable for better-performing models. However, our findings suggest that, ChrF and BertScore metrics can be used as a proxy for human evaluation of text detoxification to some extent.

pdf bib
Attention Understands Semantic Relations
Anastasia Chizhikova | Sanzhar Murzakhmetov | Oleg Serikov | Tatiana Shavrina | Mikhail Burtsev
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Today, natural language processing heavily relies on pre-trained large language models. Even though such models are criticized for the poor interpretability, they still yield state-of-the-art solutions for a wide set of very different tasks. While lots of probing studies have been conducted to measure the models’ awareness of grammatical knowledge, semantic probing is less popular. In this work, we introduce the probing pipeline to study the representedness of semantic relations in transformer language models. We show that in this task, attention scores are nearly as expressive as the layers’ output activations, despite their lesser ability to represent surface cues. This supports the hypothesis that attention mechanisms are focusing not only on the syntactic relational information but also on the semantic one.

pdf bib
Proceedings of NLP Power! The First Workshop on Efficient Benchmarking in NLP
Tatiana Shavrina | Vladislav Mikhailov | Valentin Malykh | Ekaterina Artemova | Oleg Serikov | Vitaly Protasov
Proceedings of NLP Power! The First Workshop on Efficient Benchmarking in NLP

2020

pdf bib
RussianSuperGLUE: A Russian Language Understanding Evaluation Benchmark
Tatiana Shavrina | Alena Fenogenova | Emelyanov Anton | Denis Shevelev | Ekaterina Artemova | Valentin Malykh | Vladislav Mikhailov | Maria Tikhonova | Andrey Chertok | Andrey Evlampiev
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

In this paper, we introduce an advanced Russian general language understanding evaluation benchmark – Russian SuperGLUE. Recent advances in the field of universal language models and transformers require the development of a methodology for their broad diagnostics and testing for general intellectual skills - detection of natural language inference, commonsense reasoning, ability to perform simple logical operations regardless of text subject or lexicon. For the first time, a benchmark of nine tasks, collected and organized analogically to the SuperGLUE methodology, was developed from scratch for the Russian language. We also provide baselines, human level evaluation, open-source framework for evaluating models, and an overall leaderboard of transformer models for the Russian language. Besides, we present the first results of comparing multilingual models in the translated diagnostic test set and offer the first steps to further expanding or assessing State-of-the-art models independently of language.

pdf bib
Humans Keep It One Hundred: an Overview of AI Journey
Tatiana Shavrina | Anton Emelyanov | Alena Fenogenova | Vadim Fomin | Vladislav Mikhailov | Andrey Evlampiev | Valentin Malykh | Vladimir Larin | Alex Natekin | Aleksandr Vatulin | Peter Romov | Daniil Anastasiev | Nikolai Zinov | Andrey Chertok
Proceedings of the Twelfth Language Resources and Evaluation Conference

Artificial General Intelligence (AGI) is showing growing performance in numerous applications - beating human performance in Chess and Go, using knowledge bases and text sources to answer questions (SQuAD) and even pass human examination (Aristo project). In this paper, we describe the results of AI Journey, a competition of AI-systems aimed to improve AI performance on knowledge bases, reasoning and text generation. Competing systems pass the final native language exam (in Russian), including versatile grammar tasks (test and open questions) and an essay, achieving a high score of 69%, with 68% being an average human result. During the competition, a baseline for the task and essay parts was proposed, and 80+ systems were submitted, showing different approaches to task understanding and reasoning. All the data and solutions can be found on github https://github.com/sberbank-ai/combined_solution_aij2019

2019

pdf bib
AGRR 2019: Corpus for Gapping Resolution in Russian
Maria Ponomareva | Kira Droganova | Ivan Smurov | Tatiana Shavrina
Proceedings of the 7th Workshop on Balto-Slavic Natural Language Processing

This paper provides a comprehensive overview of the gapping dataset for Russian that consists of 7.5k sentences with gapping (as well as 15k relevant negative sentences) and comprises data from various genres: news, fiction, social media and technical texts. The dataset was prepared for the Automatic Gapping Resolution Shared Task for Russian (AGRR-2019) - a competition aimed at stimulating the development of NLP tools and methods for processing of ellipsis. In this paper, we pay special attention to the gapping resolution methods that were introduced within the shared task as well as an alternative test set that illustrates that our corpus is a diverse and representative subset of Russian language gapping sufficient for effective utilization of machine learning techniques.