Tejas Dhamecha


2023

pdf bib
Semi-Structured Object Sequence Encoders
Rudra Murthy | Riyaz Bhat | Chulaka Gunasekara | Siva Patel | Hui Wan | Tejas Dhamecha | Danish Contractor | Marina Danilevsky
Findings of the Association for Computational Linguistics: EMNLP 2023

In this paper we explore the task of modeling semi-structured object sequences; in particular, we focus our attention on the problem of developing a structure-aware input representation for such sequences. Examples of such data include user activity on websites, machine logs, and many others. This type of data is often represented as a sequence of sets of key-value pairs over time and can present modeling challenges due to an ever-increasing sequence length. We propose a two-part approach, which first considers each key independently and encodes a representation of its values over time; we then self-attend over these value-aware key representations to accomplish a downstream task. This allows us to operate on longer object sequences than existing methods. We introduce a novel shared-attention-head architecture between the two modules and present an innovative training schedule that interleaves the training of both modules with shared weights for some attention heads. Our experiments on multiple prediction tasks using real-world data demonstrate that our approach outperforms a unified network with hierarchical encoding, as well as other methods including a record-centric representation and a flattened representation of the sequence.

2022

pdf bib
On Utilizing Constituent Language Resources to Improve Downstream Tasks in Hinglish
Vishwajeet Kumar | Rudra Murthy | Tejas Dhamecha
Findings of the Association for Computational Linguistics: EMNLP 2022

Performance of downstream NLP tasks on code-switched Hindi-English (aka ) continues to remain a significant challenge. Intuitively, Hindi and English corpora should aid improve task performance on Hinglish. We show that meta-learning framework can effectively utilize the the labelled resources of the downstream tasks in the constituent languages. The proposed approach improves the performance on downstream tasks on code-switched language. We experiment with code-switching benchmark GLUECoS and report significant improvements.

2021

pdf bib
Disfluency Correction using Unsupervised and Semi-supervised Learning
Nikhil Saini | Drumil Trivedi | Shreya Khare | Tejas Dhamecha | Preethi Jyothi | Samarth Bharadwaj | Pushpak Bhattacharyya
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Spoken language is different from the written language in its style and structure. Disfluencies that appear in transcriptions from speech recognition systems generally hamper the performance of downstream NLP tasks. Thus, a disfluency correction system that converts disfluent to fluent text is of great value. This paper introduces a disfluency correction model that translates disfluent to fluent text by drawing inspiration from recent encoder-decoder unsupervised style-transfer models for text. We also show considerable benefits in performance when utilizing a small sample of 500 parallel disfluent-fluent sentences in a semi-supervised way. Our unsupervised approach achieves a BLEU score of 79.39 on the Switchboard corpus test set, with further improvement to a BLEU score of 85.28 with semi-supervision. Both are comparable to two competitive fully-supervised models.

pdf bib
Role of Language Relatedness in Multilingual Fine-tuning of Language Models: A Case Study in Indo-Aryan Languages
Tejas Dhamecha | Rudra Murthy | Samarth Bharadwaj | Karthik Sankaranarayanan | Pushpak Bhattacharyya
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

We explore the impact of leveraging the relatedness of languages that belong to the same family in NLP models using multilingual fine-tuning. We hypothesize and validate that multilingual fine-tuning of pre-trained language models can yield better performance on downstream NLP applications, compared to models fine-tuned on individual languages. A first of its kind detailed study is presented to track performance change as languages are added to a base language in a graded and greedy (in the sense of best boost of performance) manner; which reveals that careful selection of subset of related languages can significantly improve performance than utilizing all related languages. The Indo-Aryan (IA) language family is chosen for the study, the exact languages being Bengali, Gujarati, Hindi, Marathi, Oriya, Punjabi and Urdu. The script barrier is crossed by simple rule-based transliteration of the text of all languages to Devanagari. Experiments are performed on mBERT, IndicBERT, MuRIL and two RoBERTa-based LMs, the last two being pre-trained by us. Low resource languages, such as Oriya and Punjabi, are found to be the largest beneficiaries of multilingual fine-tuning. Textual Entailment, Entity Classification, Section Title Prediction, tasks of IndicGLUE and POS tagging form our test bed. Compared to monolingual fine tuning we get relative performance improvement of up to 150% in the downstream tasks. The surprise take-away is that for any language there is a particular combination of other languages which yields the best performance, and any additional language is in fact detrimental.

2019

pdf bib
Development and Deployment of a Large-Scale Dialog-based Intelligent Tutoring System
Shazia Afzal | Tejas Dhamecha | Nirmal Mukhi | Renuka Sindhgatta | Smit Marvaniya | Matthew Ventura | Jessica Yarbro
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Industry Papers)

There are significant challenges involved in the design and implementation of a dialog-based tutoring system (DBT) ranging from domain engineering to natural language classification and eventually instantiating an adaptive, personalized dialog strategy. These issues are magnified when implementing such a system at scale and across domains. In this paper, we describe and reflect on the design, methods, decisions and assessments that led to the successful deployment of our AI driven DBT currently being used by several hundreds of college level students for practice and self-regulated study in diverse subjects like Sociology, Communications, and American Government.

pdf bib
Pre-Training BERT on Domain Resources for Short Answer Grading
Chul Sung | Tejas Dhamecha | Swarnadeep Saha | Tengfei Ma | Vinay Reddy | Rishi Arora
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Pre-trained BERT contextualized representations have achieved state-of-the-art results on multiple downstream NLP tasks by fine-tuning with task-specific data. While there has been a lot of focus on task-specific fine-tuning, there has been limited work on improving the pre-trained representations. In this paper, we explore ways of improving the pre-trained contextual representations for the task of automatic short answer grading, a critical component of intelligent tutoring systems. We show that the pre-trained BERT model can be improved by augmenting data from the domain-specific resources like textbooks. We also present a new approach to use labeled short answering grading data for further enhancement of the language model. Empirical evaluation on multi-domain datasets shows that task-specific fine-tuning on the enhanced pre-trained language model achieves superior performance for short answer grading.

pdf bib
Learning Outcomes and Their Relatedness in a Medical Curriculum
Sneha Mondal | Tejas Dhamecha | Shantanu Godbole | Smriti Pathak | Red Mendoza | K Gayathri Wijayarathna | Nabil Zary | Swarnadeep Saha | Malolan Chetlur
Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications

A typical medical curriculum is organized in a hierarchy of instructional objectives called Learning Outcomes (LOs); a few thousand LOs span five years of study. Gaining a thorough understanding of the curriculum requires learners to recognize and apply related LOs across years, and across different parts of the curriculum. However, given the large scope of the curriculum, manually labeling related LOs is tedious, and almost impossible to scale. In this paper, we build a system that learns relationships between LOs, and we achieve up to human-level performance in the LO relationship extraction task. We then present an application where the proposed system is employed to build a map of related LOs and Learning Resources (LRs) pertaining to a virtual patient case. We believe that our system can help medical students grasp the curriculum better, within classroom as well as in Intelligent Tutoring Systems (ITS) settings.