Thomas Bauwens
2024
Pixology: Probing the Linguistic and Visual Capabilities of Pixel-based Language Models
Kushal Tatariya
|
Vladimir Araujo
|
Thomas Bauwens
|
Miryam de Lhoneux
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Pixel-based language models have emerged as a compelling alternative to subword-based language modelling, particularly because they can represent virtually any script. PIXEL, a canonical example of such a model, is a vision transformer that has been pre-trained on rendered text. While PIXEL has shown promising cross-script transfer abilities and robustness to orthographic perturbations, it falls short of outperforming monolingual subword counterparts like BERT in most other contexts. This discrepancy raises questions about the amount of linguistic knowledge learnt by these models and whether their performance in language tasks stems more from their visual capabilities than their linguistic ones. To explore this, we probe PIXEL using a variety of linguistic and visual tasks to assess its position on the vision-to-language spectrum. Our findings reveal a substantial gap between the model’s visual and linguistic understanding. The lower layers of PIXEL predominantly capture superficial visual features, whereas the higher layers gradually learn more syntactic and semantic abstractions. Additionally, we examine variants of PIXEL trained with different text rendering strategies, discovering that introducing certain orthographic constraints at the input level can facilitate earlier learning of surface-level features. With this study, we hope to provide insights that aid the further development of pixel-based language models.
BPE-knockout: Pruning Pre-existing BPE Tokenisers with Backwards-compatible Morphological Semi-supervision
Thomas Bauwens
|
Pieter Delobelle
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Byte-pair encoding (BPE) has become the default subword tokeniser in language models (LMs), allowing the representation of an infinite space of text with a finite set of units. Yet, BPE training is unsupervised, receiving no explicit information about a language’s morphology. This results in a subword vocabulary wherein many units are a concatenation of partial morphemes, preventing their formation as tokens. This, in turn, causes consistent intra-word patterns to be displayed inconsistently to downstream models, and bloats the vocabulary, hence requiring unnecessary embedding storage. In this paper, we address this issue by identifying blameworthy BPE merges and removing the resulting subwords from the BPE vocabulary, without impeding further use of merges that relied on them. We find that our method, BPE-knockout, is effective at making BPE’s segmentation positions adhere better to derivational and compound boundaries in English, Dutch and German, and improves token-based tasks in Dutch RoBERTa models, indicating that a tokeniser’s adherence to morphology impacts downstream models. We demonstrate the latter not only by training LMs from scratch, but also by continuing the pre-training of existing LMs. This proves promising, showing that suboptimal tokenisers can be remedied whilst salvaging training cost of downstream LMs.