Timo Pierre Schrader


2024

pdf bib
QUITE: Quantifying Uncertainty in Natural Language Text in Bayesian Reasoning Scenarios
Timo Pierre Schrader | Lukas Lange | Simon Razniewski | Annemarie Friedrich
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Reasoning is key to many decision making processes. It requires consolidating a set of rule-like premises that are often associated with degrees of uncertainty and observations to draw conclusions. In this work, we address both the case where premises are specified as numeric probabilistic rules and situations in which humans state their estimates using words expressing degrees of certainty. Existing probabilistic reasoning datasets simplify the task, e.g., by requiring the model to only rank textual alternatives, by including only binary random variables, or by making use of a limited set of templates that result in less varied text.In this work, we present QUITE, a question answering dataset of real-world Bayesian reasoning scenarios with categorical random variables and complex relationships. QUITE provides high-quality natural language verbalizations of premises together with evidence statements and expects the answer to a question in the form of an estimated probability. We conduct an extensive set of experiments, finding that logic-based models outperform out-of-the-box large language models on all reasoning types (causal, evidential, and explaining-away). Our results provide evidence that neuro-symbolic models are a promising direction for improving complex reasoning. We release QUITE and code for training and experiments on Github.

2023

pdf bib
BoschAI @ Causal News Corpus 2023: Robust Cause-Effect Span Extraction using Multi-Layer Sequence Tagging and Data Augmentation
Timo Pierre Schrader | Simon Razniewski | Lukas Lange | Annemarie Friedrich
Proceedings of the 6th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text

Understanding causality is a core aspect of intelligence. The Event Causality Identification with Causal News Corpus Shared Task addresses two aspects of this challenge: Subtask 1 aims at detecting causal relationships in texts, and Subtask 2 requires identifying signal words and the spans that refer to the cause or effect, respectively. Our system, which is based on pre-trained transformers, stacked sequence tagging, and synthetic data augmentation, ranks third in Subtask 1 and wins Subtask 2 with an F1 score of 72.8, corresponding to a margin of 13 pp. to the second-best system.

pdf bib
Controllable Active-Passive Voice Generation using Prefix Tuning
Valentin Knappich | Timo Pierre Schrader
Proceedings of the 8th Student Research Workshop associated with the International Conference Recent Advances in Natural Language Processing

The prompting paradigm is an uprising trend in the field of Natural Language Processing (NLP) that aims to learn tasks by finding appropriate prompts rather than fine-tuning the model weights. Such prompts can express an intention, e.g., they can instruct a language model to generate a summary of a given event. In this paper, we study how to influence (”control”) the language generation process such that the outcome fulfills a requested linguistic property. More specifically, we look at controllable active-passive (AP) voice generation, i.e., we require the model to generate a sentence in the requested voice. We build upon the prefix tuning approach and introduce control tokens that are trained on controllable AP generation. We create an AP subset of the WebNLG dataset to fine-tune these control tokens. Among four different models, the one trained with a contrastive learning approach yields the best results in terms of AP accuracy ( 95%) but at the cost of decreased performance on the original WebNLG task.

pdf bib
MuLMS: A Multi-Layer Annotated Text Corpus for Information Extraction in the Materials Science Domain
Timo Pierre Schrader | Matteo Finco | Stefan Grünewald | Felix Hildebrand | Annemarie Friedrich
Proceedings of the Second Workshop on Information Extraction from Scientific Publications