2024
pdf
bib
abs
Knowledge Navigator: LLM-guided Browsing Framework for Exploratory Search in Scientific Literature
Uri Katz
|
Mosh Levy
|
Yoav Goldberg
Findings of the Association for Computational Linguistics: EMNLP 2024
The exponential growth of scientific literature necessitates advanced tools for effective knowledge exploration. We present Knowledge Navigator, a system designed to enhance exploratory search abilities by organizing and structuring the retrieved documents from broad topical queries into a navigable, two-level hierarchy of named and descriptive scientific topics and subtopics. This structured organization provides an overall view of the research themes in a domain, while also enabling iterative search and deeper knowledge discovery within specific subtopics by allowing users to refine their focus and retrieve additional relevant documents. Knowledge Navigator combines LLM capabilities with cluster-based methods to enable an effective browsing method. We demonstrate our approach’s effectiveness through automatic and manual evaluations on two novel benchmarks, CLUSTREC-COVID and SCITOC Our code, prompts, and benchmarks are made publicly available.
2023
pdf
bib
abs
Answering Questions by Meta-Reasoning over Multiple Chains of Thought
Ori Yoran
|
Tomer Wolfson
|
Ben Bogin
|
Uri Katz
|
Daniel Deutch
|
Jonathan Berant
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Modern systems for multi-hop question answering (QA) typically break questions into a sequence of reasoning steps, termed chain-of-thought (CoT), before arriving at a final answer. Often, multiple chains are sampled and aggregated through a voting mechanism over the final answers, but the intermediate steps themselves are discarded. While such approaches improve performance, they do not consider the relations between intermediate steps across chains and do not provide a unified explanation for the predicted answer. We introduce Multi-Chain Reasoning (MCR), an approach which prompts large language models to meta-reason over multiple chains of thought, rather than aggregate their answers. MCR examines different reasoning chains, mixes information between them and selects the most relevant facts in generating an explanation and predicting the answer. MCR outperforms strong baselines on 7 multi-hop QA datasets. Moreover, our analysis reveals that MCR explanations exhibit high quality, enabling humans to verify its answers.
pdf
bib
abs
NERetrieve: Dataset for Next Generation Named Entity Recognition and Retrieval
Uri Katz
|
Matan Vetzler
|
Amir Cohen
|
Yoav Goldberg
Findings of the Association for Computational Linguistics: EMNLP 2023
Recognizing entities in texts is a central need in many information-seeking scenarios, and indeed, Named Entity Recognition (NER) is arguably one of the most successful examples of a widely adopted NLP task and corresponding NLP technology. Recent advances in large language models (LLMs) appear to provide effective solutions (also) for NER tasks that were traditionally handled with dedicated models, often matching or surpassing the abilities of the dedicated models. Should NER be considered a solved problem? We argue to the contrary: the capabilities provided by LLMs are not the end of NER research, but rather an exciting beginning. They allow taking NER to the next level, tackling increasingly more useful, and increasingly more challenging, variants. We present three variants of the NER task, together with a dataset to support them. The first is a move towards more fine-grained—and intersectional—entity types. The second is a move towards zero-shot recognition and extraction of these fine-grained types based on entity-type labels. The third, and most challenging, is the move from the recognition setup to a novel retrieval setup, where the query is a zero-shot entity type, and the expected result is all the sentences from a large, pre-indexed corpus that contain entities of these types, and their corresponding spans. We show that all of these are far from being solved. We provide a large, silver-annotated corpus of 4 million paragraphs covering 500 entity types, to facilitate research towards all of these three goals.
2022
pdf
bib
abs
Inferring Implicit Relations in Complex Questions with Language Models
Uri Katz
|
Mor Geva
|
Jonathan Berant
Findings of the Association for Computational Linguistics: EMNLP 2022
A prominent challenge for modern language understanding systems is the ability to answer implicit reasoning questions, where the required reasoning steps for answering the question are not mentioned in the text explicitly. In this work, we investigate why current models struggle with implicit reasoning question answering (QA) tasks, by decoupling inference of reasoning steps from their execution.We define a new task of implicit relation inference and construct a benchmark, IMPLICITRELATIONS, where given a question, a model should output a list of concept-relation pairs, where the relations describe the implicit reasoning steps required for answering the question.Using IMPLICITRELATIONS, we evaluate models from the GPT-3 family and find that, while these models struggle on the implicit reasoning QA task, they often succeed at inferring implicit relations.This suggests that the challenge in implicit reasoning questions does not stem from the need to plan a reasoning strategy alone, but to do it while also retrieving and reasoning over relevant information.
2021
pdf
bib
abs
What’s in Your Head? Emergent Behaviour in Multi-Task Transformer Models
Mor Geva
|
Uri Katz
|
Aviv Ben-Arie
|
Jonathan Berant
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
The primary paradigm for multi-task training in natural language processing is to represent the input with a shared pre-trained language model, and add a small, thin network (head) per task. Given an input, a target head is the head that is selected for outputting the final prediction. In this work, we examine the behaviour of non-target heads, that is, the output of heads when given input that belongs to a different task than the one they were trained for. We find that non-target heads exhibit emergent behaviour, which may either explain the target task, or generalize beyond their original task. For example, in a numerical reasoning task, a span extraction head extracts from the input the arguments to a computation that results in a number generated by a target generative head. In addition, a summarization head that is trained with a target question answering head, outputs query-based summaries when given a question and a context from which the answer is to be extracted. This emergent behaviour suggests that multi-task training leads to non-trivial extrapolation of skills, which can be harnessed for interpretability and generalization.