Veronika Thost


2024

pdf bib
A Graph per Persona: Reasoning about Subjective Natural Language Descriptions
EunJeong Hwang | Vered Shwartz | Dan Gutfreund | Veronika Thost
Findings of the Association for Computational Linguistics: ACL 2024

Reasoning about subjective natural language descriptions, such as opinions and preferences, is a challenging topic that largely remains unsolved to date. In particular, state-of-the-art large language models (LLMs) perform disappointingly in this task, show strong biases, and do not meet the interpretability requirements often needed in these kinds of applications. We propose a novel approach for reasoning about subjective knowledge that integrates potential and implicit meanings and explicitly models the relational nature of the information. We apply supervised graph learning, offer explanations for the model’s reasoning, and show that our model performs well across all 15 topics of OpinionQA, outperforming several prominent LLMs. Our detailed analysis further shows its unique advantages and the complementary nature it offers in comparison to LLMs.

2023

pdf bib
Knowledge Graph Compression Enhances Diverse Commonsense Generation
EunJeong Hwang | Veronika Thost | Vered Shwartz | Tengfei Ma
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Generating commonsense explanations requires reasoning about commonsense knowledge beyond what is explicitly mentioned in the context. Existing models use commonsense knowledge graphs such as ConceptNet to extract a subgraph of relevant knowledge pertaining to concepts in the input. However, due to the large coverage and, consequently, vast scale of ConceptNet, the extracted subgraphs may contain loosely related, redundant and irrelevant information, which can introduce noise into the model. We propose to address this by applying a differentiable graph compression algorithm that focuses on the relevant knowledge for the task. The compressed subgraphs yield considerably more diverse outputs when incorporated into models for the tasks of generating commonsense and abductive explanations. Moreover, our model achieves better quality-diversity tradeoff than a large language model with 100 times the number of parameters. Our generic approach can be applied to additional NLP tasks that can benefit from incorporating external knowledge.