Vivek Khetan


2024

pdf bib
DEFT-UCS: Data Efficient Fine-Tuning for Pre-Trained Language Models via Unsupervised Core-Set Selection for Text-Editing
Devleena Das | Vivek Khetan
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Recent advances have led to the availability of many pre-trained language models (PLMs); however, a question that remains is how much data is truly needed to fine-tune PLMs for downstream tasks? In this work, we introduce DEFT-UCS, a data-efficient fine-tuning framework that leverages unsupervised core-set selection to identify a smaller, representative dataset to fine-tune PLMs for text-generation needed for text editing tasks such as simplification, grammar correction, clarity, etc. We examine the efficacy of DEFT-UCS across multiple text-editing tasks, and compare to the state-of-the art text-editing model, CoEDIT. Our results demonstrate that DEFT-UCS models are just as accurate as CoEDIT, across eight different datasets consisting of six different editing tasks, while finetuned on 70% less data.

2023

pdf bib
CHARD: Clinical Health-Aware Reasoning Across Dimensions for Text Generation Models
Steven Y. Feng | Vivek Khetan | Bogdan Sacaleanu | Anatole Gershman | Eduard Hovy
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

We motivate and introduce CHARD: Clinical Health-Aware Reasoning across Dimensions, to investigate the capability of text generation models to act as implicit clinical knowledge bases and generate free-flow textual explanations about various health-related conditions across several dimensions. We collect and present an associated dataset, CHARDat, consisting of explanations about 52 health conditions across three clinical dimensions. We conduct extensive experiments using BART and T5 along with data augmentation, and perform automatic, human, and qualitative analyses. We show that while our models can perform decently, CHARD is very challenging with strong potential for further exploration.

pdf bib
RedHOT: A Corpus of Annotated Medical Questions, Experiences, and Claims on Social Media
Somin Wadhwa | Vivek Khetan | Silvio Amir | Byron Wallace
Findings of the Association for Computational Linguistics: EACL 2023

We present Reddit Health Online Talk (RedHOT), a corpus of 22,000 richly annotated social media posts from Reddit spanning 24 health conditions. Annotations include demarcations of spans corresponding to medical claims, personal experiences, and questions. We collect additional granular annotations on identified claims. Specifically, we mark snippets that describe patient Populations, Interventions, and Outcomes (PIO elements) within these. Using this corpus, we introduce the task of retrieving trustworthy evidence relevant to a given claim made on social media. We propose a new method to automatically derive (noisy) supervision for this task which we use to train a dense retrieval model; this outperforms baseline models. Manual evaluation of retrieval results performed by medical doctors indicate that while our system performance is promising, there is considerable room for improvement. We release all annotations collected (and scripts to assemble the dataset), and all code necessary to reproduce the results in this paper at: https://sominw.com/redhot.

pdf bib
Template Filling for Controllable Commonsense Reasoning
Dheeraj Rajagopal | Vivek Khetan | Bogdan Sacaleanu | Anatole Gershman | Andrew E. Fano Fano | Eduard Hovy
Findings of the Association for Computational Linguistics: IJCNLP-AACL 2023 (Findings)

pdf bib
SemEval-2023 Task 8: Causal Medical Claim Identification and Related PIO Frame Extraction from Social Media Posts
Vivek Khetan | Somin Wadhwa | Byron Wallace | Silvio Amir
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)

Identification of medical claims from user-generated text data is an onerous but essential step for various tasks including content moderation, and hypothesis generation. SemEval-2023 Task 8 is an effort towards building those capabilities and motivating further research in this direction. This paper summarizes the details and results of shared task 8 at SemEval-2023 which involved identifying causal medical claims and extracting related Populations, Interventions, and Outcomes (“PIO”) frames from social media (Reddit) text. This shared task comprised two subtasks: (1) Causal claim identification; and (2) PIO frame extraction. In total, seven teams participated in the task. Of the seven, six provided system descriptions which we summarize here. For the first subtask, the best approach yielded a macro-averaged F-1 score of 78.40, and for the second subtask, the best approach achieved token-level F-1 scores of 40.55 for Populations, 49.71 for Interventions, and 30.08 for Outcome frames.

2022

pdf bib
MIMICause: Representation and automatic extraction of causal relation types from clinical notes
Vivek Khetan | Md Imbesat Rizvi | Jessica Huber | Paige Bartusiak | Bogdan Sacaleanu | Andrew Fano
Findings of the Association for Computational Linguistics: ACL 2022

Understanding causal narratives communicated in clinical notes can help make strides towards personalized healthcare. Extracted causal information from clinical notes can be combined with structured EHR data such as patients’ demographics, diagnoses, and medications. This will enhance healthcare providers’ ability to identify aspects of a patient’s story communicated in the clinical notes and help make more informed decisions. In this work, we propose annotation guidelines, develop an annotated corpus and provide baseline scores to identify types and direction of causal relations between a pair of biomedical concepts in clinical notes; communicated implicitly or explicitly, identified either in a single sentence or across multiple sentences. We annotate a total of 2714 de-identified examples sampled from the 2018 n2c2 shared task dataset and train four different language model based architectures. Annotation based on our guidelines achieved a high inter-annotator agreement i.e. Fleiss’ kappa (𝜅) score of 0.72, and our model for identification of causal relations achieved a macro F1 score of 0.56 on the test data. The high inter-annotator agreement for clinical text shows the quality of our annotation guidelines while the provided baseline F1 score sets the direction for future research towards understanding narratives in clinical texts.