2024
pdf
bib
abs
Privacy Evaluation Benchmarks for NLP Models
Wei Huang
|
Yinggui Wang
|
Cen Chen
Findings of the Association for Computational Linguistics: EMNLP 2024
By inducing privacy attacks on NLP models, attackers can obtain sensitive information such as training data and model parameters, etc. Although researchers have studied, in-depth, several kinds of attacks in NLP models, they are non-systematic analyses. It lacks a comprehensive understanding of the impact caused by the attacks. For example, we must consider which scenarios can apply to which attacks, what the common factors are that affect the performance of different attacks, the nature of the relationships between different attacks, and the influence of various datasets and models on the effectiveness of the attacks, etc. Therefore, we need a benchmark to holistically assess the privacy risks faced by NLP models. In this paper, we present a privacy attack and defense evaluation benchmark in the field of NLP, which includes the conventional/small models and large language models (LLMs). This benchmark supports a variety of models, datasets, and protocols, along with standardized modules for comprehensive evaluation of attacks and defense strategies. Based on the above framework, we present a study on the association between auxiliary data from different domains and the strength of privacy attacks. And we provide an improved attack method in this scenario with the help of Knowledge Distillation (KD). Furthermore, we propose a chained framework for privacy attacks. Allowing a practitioner to chain multiple attacks to achieve a higher-level attack objective. Based on this, we provide some defense and enhanced attack strategies. The code for reproducing the results can be found at https://anonymous.4open.science/r/nlp_doctor-AF48
2022
pdf
bib
abs
Exploring Label Hierarchy in a Generative Way for Hierarchical Text Classification
Wei Huang
|
Chen Liu
|
Bo Xiao
|
Yihua Zhao
|
Zhaoming Pan
|
Zhimin Zhang
|
Xinyun Yang
|
Guiquan Liu
Proceedings of the 29th International Conference on Computational Linguistics
Hierarchical Text Classification (HTC), which aims to predict text labels organized in hierarchical space, is a significant task lacking in investigation in natural language processing. Existing methods usually encode the entire hierarchical structure and fail to construct a robust label-dependent model, making it hard to make accurate predictions on sparse lower-level labels and achieving low Macro-F1. In this paper, we explore the level dependency and path dependency of the label hierarchy in a generative way for building the knowledge of upper-level labels of current path into lower-level ones, and thus propose a novel PAAM-HiA-T5 model for HTC: a hierarchy-aware T5 model with path-adaptive attention mechanism. Specifically, we generate a multi-level sequential label structure to exploit hierarchical dependency across different levels with Breadth-First Search (BFS) and T5 model. To further improve label dependency prediction within each path, we then propose an original path-adaptive attention mechanism (PAAM) to lead the model to adaptively focus on the path where the currently generated label is located, shielding the noise from other paths. Comprehensive experiments on three benchmark datasets show that PAAM-HiA-T5 greatly outperforms all state-of-the-art HTC approaches especially in Macro-F1.
2006
pdf
bib
A Chinese Dependency Syntax for Treebanking
Haitao Liu
|
Wei Huang
Proceedings of the 20th Pacific Asia Conference on Language, Information and Computation
2005
pdf
bib
閩南語語句基週軌跡產生: 兩種模型之混合與比較 (Min-Nan Sentence Pitch-contour Generation: Mixing and Comparison of Two Kinds of Models) [In Chinese]
Hung-Yan Gu
|
Wei Huang
Proceedings of the 17th Conference on Computational Linguistics and Speech Processing