We present a new BERT model for the cybersecurity domain, CTI-BERT, which can improve the accuracy of cyber threat intelligence (CTI) extraction, enabling organizations to better defend against potential cyber threats. We provide detailed information about the domain corpus collection, the training methodology and its effectiveness for a variety of NLP tasks for the cybersecurity domain. The experiments show that CTI-BERT significantly outperforms several general-domain and security-domain models for these cybersecurity applications indicating that the training data and methodology have a significant impact on the model performance.
Entities and events are crucial to natural language reasoning and common in procedural texts. Existing work has focused either exclusively on entity state tracking (e.g., whether a pan is hot) or on event reasoning (e.g., whether one would burn themselves by touching the pan), while these two tasks are often causally related. We propose CREPE, the first benchmark on causal reasoning of event plausibility and entity states. We show that most language models, including GPT-3, perform close to chance at .35 F1, lagging far behind human at .87 F1. We boost model performance to .59 F1 by creatively representing events as programming languages while prompting language models pretrained on code. By injecting the causal relations between entities and events as intermediate reasoning steps in our representation, we further boost the performance to .67 F1. Our findings indicate not only the challenge that CREPE brings for language models, but also the efficacy of code-like prompting combined with chain-of-thought prompting for multihop event reasoning.
While traditional corpus-level evaluation metrics for machine translation (MT) correlate well with fluency, they struggle to reflect adequacy. Model-based MT metrics trained on segment-level human judgments have emerged as an attractive replacement due to strong correlation results. These models, however, require potentially expensive re-training for new domains and languages. Furthermore, their decisions are inherently non-transparent and appear to reflect unwelcome biases. We explore the simple type-based classifier metric, MacroF1, and study its applicability to MT evaluation. We find that MacroF1 is competitive on direct assessment, and outperforms others in indicating downstream cross-lingual information retrieval task performance. Further, we show that MacroF1 can be used to effectively compare supervised and unsupervised neural machine translation, and reveal significant qualitative differences in the methods’ outputs.
Recent work has questioned the importance of the Transformer’s multi-headed attention for achieving high translation quality. We push further in this direction by developing a “hard-coded” attention variant without any learned parameters. Surprisingly, replacing all learned self-attention heads in the encoder and decoder with fixed, input-agnostic Gaussian distributions minimally impacts BLEU scores across four different language pairs. However, additionally, hard-coding cross attention (which connects the decoder to the encoder) significantly lowers BLEU, suggesting that it is more important than self-attention. Much of this BLEU drop can be recovered by adding just a single learned cross attention head to an otherwise hard-coded Transformer. Taken as a whole, our results offer insight into which components of the Transformer are actually important, which we hope will guide future work into the development of simpler and more efficient attention-based models.