Weiyue Wang


2021

pdf bib
Investigation on Data Adaptation Techniques for Neural Named Entity Recognition
Evgeniia Tokarchuk | David Thulke | Weiyue Wang | Christian Dugast | Hermann Ney
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: Student Research Workshop

Data processing is an important step in various natural language processing tasks. As the commonly used datasets in named entity recognition contain only a limited number of samples, it is important to obtain additional labeled data in an efficient and reliable manner. A common practice is to utilize large monolingual unlabeled corpora. Another popular technique is to create synthetic data from the original labeled data (data augmentation). In this work, we investigate the impact of these two methods on the performance of three different named entity recognition tasks.

pdf bib
Transformer-Based Direct Hidden Markov Model for Machine Translation
Weiyue Wang | Zijian Yang | Yingbo Gao | Hermann Ney
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: Student Research Workshop

The neural hidden Markov model has been proposed as an alternative to attention mechanism in machine translation with recurrent neural networks. However, since the introduction of the transformer models, its performance has been surpassed. This work proposes to introduce the concept of the hidden Markov model to the transformer architecture, which outperforms the transformer baseline. Interestingly, we find that the zero-order model already provides promising performance, giving it an edge compared to a model with first-order dependency, which performs similarly but is significantly slower in training and decoding.

pdf bib
Integrated Training for Sequence-to-Sequence Models Using Non-Autoregressive Transformer
Evgeniia Tokarchuk | Jan Rosendahl | Weiyue Wang | Pavel Petrushkov | Tomer Lancewicki | Shahram Khadivi | Hermann Ney
Proceedings of the 18th International Conference on Spoken Language Translation (IWSLT 2021)

Complex natural language applications such as speech translation or pivot translation traditionally rely on cascaded models. However,cascaded models are known to be prone to error propagation and model discrepancy problems. Furthermore, there is no possibility of using end-to-end training data in conventional cascaded systems, meaning that the training data most suited for the task cannot be used. Previous studies suggested several approaches for integrated end-to-end training to overcome those problems, however they mostly rely on(synthetic or natural) three-way data. We propose a cascaded model based on the non-autoregressive Transformer that enables end-to-end training without the need for an explicit intermediate representation. This new architecture (i) avoids unnecessary early decisions that can cause errors which are then propagated throughout the cascaded models and (ii) utilizes the end-to-end training data directly. We conduct an evaluation on two pivot-based machine translation tasks, namely French→German and German→Czech. Our experimental results show that the proposed architecture yields an improvement of more than 2 BLEU for French→German over the cascaded baseline.

2020

pdf bib
Towards a Better Understanding of Label Smoothing in Neural Machine Translation
Yingbo Gao | Weiyue Wang | Christian Herold | Zijian Yang | Hermann Ney
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing

In order to combat overfitting and in pursuit of better generalization, label smoothing is widely applied in modern neural machine translation systems. The core idea is to penalize over-confident outputs and regularize the model so that its outputs do not diverge too much from some prior distribution. While training perplexity generally gets worse, label smoothing is found to consistently improve test performance. In this work, we aim to better understand label smoothing in the context of neural machine translation. Theoretically, we derive and explain exactly what label smoothing is optimizing for. Practically, we conduct extensive experiments by varying which tokens to smooth, tuning the probability mass to be deducted from the true targets and considering different prior distributions. We show that label smoothing is theoretically well-motivated, and by carefully choosing hyperparameters, the practical performance of strong neural machine translation systems can be further improved.

pdf bib
Predicting and Using Target Length in Neural Machine Translation
Zijian Yang | Yingbo Gao | Weiyue Wang | Hermann Ney
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing

Attention-based encoder-decoder models have achieved great success in neural machine translation tasks. However, the lengths of the target sequences are not explicitly predicted in these models. This work proposes length prediction as an auxiliary task and set up a sub-network to obtain the length information from the encoder. Experimental results show that the length prediction sub-network brings improvements over the strong baseline system and that the predicted length can be used as an alternative to length normalization during decoding.

pdf bib
Neural Language Modeling for Named Entity Recognition
Zhihong Lei | Weiyue Wang | Christian Dugast | Hermann Ney
Proceedings of the 28th International Conference on Computational Linguistics

Named entity recognition is a key component in various natural language processing systems, and neural architectures provide significant improvements over conventional approaches. Regardless of different word embedding and hidden layer structures of the networks, a conditional random field layer is commonly used for the output. This work proposes to use a neural language model as an alternative to the conditional random field layer, which is more flexible for the size of the corpus. Experimental results show that the proposed system has a significant advantage in terms of training speed, with a marginal performance degradation.

pdf bib
Towards a Better Evaluation of Metrics for Machine Translation
Peter Stanchev | Weiyue Wang | Hermann Ney
Proceedings of the Fifth Conference on Machine Translation

An important aspect of machine translation is its evaluation, which can be achieved through the use of a variety of metrics. To compare these metrics, the workshop on statistical machine translation annually evaluates metrics based on their correlation with human judgement. Over the years, methods for measuring correlation with humans have changed, but little research has been performed on what the optimal methods for acquiring human scores are and how human correlation can be measured. In this work, the methods for evaluating metrics at both system- and segment-level are analyzed in detail and their shortcomings are pointed out.

2019

pdf bib
Analysis of Positional Encodings for Neural Machine Translation
Jan Rosendahl | Viet Anh Khoa Tran | Weiyue Wang | Hermann Ney
Proceedings of the 16th International Conference on Spoken Language Translation

In this work we analyze and compare the behavior of the Transformer architecture when using different positional encoding methods. While absolute and relative positional encoding perform equally strong overall, we show that relative positional encoding is vastly superior (4.4% to 11.9% BLEU) when translating a sentence that is longer than any observed training sentence. We further propose and analyze variations of relative positional encoding and observe that the number of trainable parameters can be reduced without a performance loss, by using fixed encoding vectors or by removing some of the positional encoding vectors.

pdf bib
Exploring Kernel Functions in the Softmax Layer for Contextual Word Classification
Yingbo Gao | Christian Herold | Weiyue Wang | Hermann Ney
Proceedings of the 16th International Conference on Spoken Language Translation

Prominently used in support vector machines and logistic re-gressions, kernel functions (kernels) can implicitly map data points into high dimensional spaces and make it easier to learn complex decision boundaries. In this work, by replacing the inner product function in the softmax layer, we explore the use of kernels for contextual word classification. In order to compare the individual kernels, experiments are conducted on standard language modeling and machine translation tasks. We observe a wide range of performances across different kernel settings. Extending the results, we look at the gradient properties, investigate various mixture strategies and examine the disambiguation abilities.

pdf bib
uniblock: Scoring and Filtering Corpus with Unicode Block Information
Yingbo Gao | Weiyue Wang | Hermann Ney
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

The preprocessing pipelines in Natural Language Processing usually involve a step of removing sentences consisted of illegal characters. The definition of illegal characters and the specific removal strategy depend on the task, language, domain, etc, which often lead to tiresome and repetitive scripting of rules. In this paper, we introduce a simple statistical method, uniblock, to overcome this problem. For each sentence, uniblock generates a fixed-size feature vector using Unicode block information of the characters. A Gaussian mixture model is then estimated on some clean corpus using variational inference. The learned model can then be used to score sentences and filter corpus. We present experimental results on Sentiment Analysis, Language Modeling and Machine Translation, and show the simplicity and effectiveness of our method.

pdf bib
The RWTH Aachen University Machine Translation Systems for WMT 2019
Jan Rosendahl | Christian Herold | Yunsu Kim | Miguel Graça | Weiyue Wang | Parnia Bahar | Yingbo Gao | Hermann Ney
Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)

This paper describes the neural machine translation systems developed at the RWTH Aachen University for the German-English, Chinese-English and Kazakh-English news translation tasks of the Fourth Conference on Machine Translation (WMT19). For all tasks, the final submitted system is based on the Transformer architecture. We focus on improving data filtering and fine-tuning as well as systematically evaluating interesting approaches like unigram language model segmentation and transfer learning. For the De-En task, none of the tested methods gave a significant improvement over last years winning system and we end up with the same performance, resulting in 39.6% BLEU on newstest2019. In the Zh-En task, we show 1.3% BLEU improvement over our last year’s submission, which we mostly attribute to the splitting of long sentences during translation. We further report results on the Kazakh-English task where we gain improvements of 11.1% BLEU over our baseline system. On the same task we present a recent transfer learning approach, which uses half of the free parameters of our submission system and performs on par with it.

pdf bib
EED: Extended Edit Distance Measure for Machine Translation
Peter Stanchev | Weiyue Wang | Hermann Ney
Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)

Over the years a number of machine translation metrics have been developed in order to evaluate the accuracy and quality of machine-generated translations. Metrics such as BLEU and TER have been used for decades. However, with the rapid progress of machine translation systems, the need for better metrics is growing. This paper proposes an extension of the edit distance, which achieves better human correlation, whilst remaining fast, flexible and easy to understand.

2018

pdf bib
Neural Hidden Markov Model for Machine Translation
Weiyue Wang | Derui Zhu | Tamer Alkhouli | Zixuan Gan | Hermann Ney
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Attention-based neural machine translation (NMT) models selectively focus on specific source positions to produce a translation, which brings significant improvements over pure encoder-decoder sequence-to-sequence models. This work investigates NMT while replacing the attention component. We study a neural hidden Markov model (HMM) consisting of neural network-based alignment and lexicon models, which are trained jointly using the forward-backward algorithm. We show that the attention component can be effectively replaced by the neural network alignment model and the neural HMM approach is able to provide comparable performance with the state-of-the-art attention-based models on the WMT 2017 German↔English and Chinese→English translation tasks.

2017

pdf bib
Hybrid Neural Network Alignment and Lexicon Model in Direct HMM for Statistical Machine Translation
Weiyue Wang | Tamer Alkhouli | Derui Zhu | Hermann Ney
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Recently, the neural machine translation systems showed their promising performance and surpassed the phrase-based systems for most translation tasks. Retreating into conventional concepts machine translation while utilizing effective neural models is vital for comprehending the leap accomplished by neural machine translation over phrase-based methods. This work proposes a direct HMM with neural network-based lexicon and alignment models, which are trained jointly using the Baum-Welch algorithm. The direct HMM is applied to rerank the n-best list created by a state-of-the-art phrase-based translation system and it provides improvements by up to 1.0% Bleu scores on two different translation tasks.

2016

pdf bib
Exponentially Decaying Bag-of-Words Input Features for Feed-Forward Neural Network in Statistical Machine Translation
Jan-Thorsten Peter | Weiyue Wang | Hermann Ney
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

pdf bib
CharacTer: Translation Edit Rate on Character Level
Weiyue Wang | Jan-Thorsten Peter | Hendrik Rosendahl | Hermann Ney
Proceedings of the First Conference on Machine Translation: Volume 2, Shared Task Papers