Xiangji Zeng


2021

pdf bib
KACE: Generating Knowledge Aware Contrastive Explanations for Natural Language Inference
Qianglong Chen | Feng Ji | Xiangji Zeng | Feng-Lin Li | Ji Zhang | Haiqing Chen | Yin Zhang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

In order to better understand the reason behind model behaviors (i.e., making predictions), most recent works have exploited generative models to provide complementary explanations. However, existing approaches in NLP mainly focus on “WHY A” rather than contrastive “WHY A NOT B”, which is shown to be able to better distinguish confusing candidates and improve data efficiency in other research fields. In this paper, we focus on generating contrastive explanations with counterfactual examples in NLI and propose a novel Knowledge-Aware Contrastive Explanation generation framework (KACE).Specifically, we first identify rationales (i.e., key phrases) from input sentences, and use them as key perturbations for generating counterfactual examples. After obtaining qualified counterfactual examples, we take them along with original examples and external knowledge as input, and employ a knowledge-aware generative pre-trained language model to generate contrastive explanations. Experimental results show that contrastive explanations are beneficial to fit the scenarios by clarifying the difference between the predicted answer and other possible wrong ones. Moreover, we train an NLI model enhanced with contrastive explanations and achieves an accuracy of 91.9% on SNLI, gaining improvements of 5.7% against ETPA (“Explain-Then-Predict-Attention”) and 0.6% against NILE (“WHY A”).

2020

pdf bib
Counterfactual Generator: A Weakly-Supervised Method for Named Entity Recognition
Xiangji Zeng | Yunliang Li | Yuchen Zhai | Yin Zhang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Past progress on neural models has proven that named entity recognition is no longer a problem if we have enough labeled data. However, collecting enough data and annotating them are labor-intensive, time-consuming, and expensive. In this paper, we decompose the sentence into two parts: entity and context, and rethink the relationship between them and model performance from a causal perspective. Based on this, we propose the Counterfactual Generator, which generates counterfactual examples by the interventions on the existing observational examples to enhance the original dataset. Experiments across three datasets show that our method improves the generalization ability of models under limited observational examples. Besides, we provide a theoretical foundation by using a structural causal model to explore the spurious correlations between input features and output labels. We investigate the causal effects of entity or context on model performance under both conditions: the non-augmented and the augmented. Interestingly, we find that the non-spurious correlations are more located in entity representation rather than context representation. As a result, our method eliminates part of the spurious correlations between context representation and output labels. The code is available at https://github.com/xijiz/cfgen.