Xiao Lv
2023
HermEs: Interactive Spreadsheet Formula Prediction via Hierarchical Formulet Expansion
Wanrong He
|
Haoyu Dong
|
Yihuai Gao
|
Zhichao Fan
|
Xingzhuo Guo
|
Zhitao Hou
|
Xiao Lv
|
Ran Jia
|
Shi Han
|
Dongmei Zhang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
We propose HermEs, the first approach for spreadsheet formula prediction via HiEraRchical forMulet ExpanSion, where hierarchical expansion means generating formulas following the underlying parse tree structure, and Formulet refers to commonly-used multi-level patterns mined from real formula parse trees. HermEs improves the formula prediction accuracy by (1) guaranteeing correct grammar by hierarchical generation rather than left-to-right generation and (2) significantly streamlining the token-level decoding with high-level Formulet. Notably, instead of generating formulas in a pre-defined fixed order, we propose a novel sampling strategy to systematically exploit a variety of hierarchical and multi-level expansion orders and provided solid mathematical proof, with the aim of meeting diverse human needs of the formula writing order in real applications. We further develop an interactive formula completion interface based on HermEs, which shows a new user experience in https://github.com/formulet/HERMES.
AnaMeta: A Table Understanding Dataset of Field Metadata Knowledge Shared by Multi-dimensional Data Analysis Tasks
Xinyi He
|
Mengyu Zhou
|
Mingjie Zhou
|
Jialiang Xu
|
Xiao Lv
|
Tianle Li
|
Yijia Shao
|
Shi Han
|
Zejian Yuan
|
Dongmei Zhang
Findings of the Association for Computational Linguistics: ACL 2023
Tabular data analysis is performed everyday across various domains. It requires an accurate understanding of field semantics to correctly operate on table fields and find common patterns in daily analysis. In this paper, we introduce the AnaMeta dataset, a collection of 467k tables with derived supervision labels for four types of commonly used field metadata: measure/dimension dichotomy, common field roles, semantic field type, and default aggregation function. We evaluate a wide range of models for inferring metadata as the benchmark. We also propose a multi-encoder framework, called KDF, which improves the metadata understanding capability of tabular models by incorporating distribution and knowledge information. Furthermore, we propose four interfaces for incorporating field metadata into downstream analysis tasks.