Xiaoxu Zhu

Also published as: 晓旭


2025

pdf bib
Trucidator: Document-level Event Factuality Identification via Hallucination Enhancement and Cross-Document Inference
Zihao Zhang | Zhong Qian | Xiaoxu Zhu | Peifeng Li | Qiaoming Zhu
Proceedings of the 31st International Conference on Computational Linguistics

Document-level event factuality identification (DEFI) assesses the veracity degree to which an event mentioned in a document has happened, which is crucial for many natural language processing tasks. Previous work assesses event factuality by solely relying on the semantic information within a single document, which fails to identify hard cases where the document itself is hallucinative or counterfactual. There is also a pressing need for more suitable data of this kind. To tackle these issues, we construct Factualusion, a novel corpus with hallucination features that can be used not only for DEFI but can also be applied for hallucination evaluation for large language models. We further propose Trucidator, a graph-based framework that constructs intra-document and cross-document graphs and employs a multi-task learning paradigm to acquire more robust node embeddings, leveraging cross-document inference for more accurate identification. Experiments show that our proposed framework outperformed several baselines, demonstrating the effectiveness of our method.

2023

pdf bib
Incorporating Factuality Inference to Identify Document-level Event Factuality
Heng Zhang | Peifeng Li | Zhong Qian | Xiaoxu Zhu
Findings of the Association for Computational Linguistics: ACL 2023

Document-level Event Factuality Identification (DEFI) refers to identifying the degree of certainty that a specific event occurs in a document. Previous studies on DEFI failed to link the document-level event factuality with various sentence-level factuality values in the same document. In this paper, we innovatively propose an event factuality inference task to bridge the sentence-level and the document-level event factuality semantically. Specifically, we present a Sentence-to-Document Inference Network (SDIN) that contains a multi-layer interaction module and a gated aggregation module to integrate the above two tasks, and employ a multi-task learning framework to improve the performance of DEFI. The experimental results on the public English and Chinese DLEF datasets show that our model outperforms the SOTA baselines significantly.

2021

pdf bib
融合情感分析的隐式反问句识别模型(Implicit Rhetorical Questions Recognition Model Combined with Sentiment Analysis)
Xiang Li (李翔) | Chengwei Liu (刘承伟) | Xiaoxu Zhu (朱晓旭)
Proceedings of the 20th Chinese National Conference on Computational Linguistics

反问是现代汉语中一种常用的修辞手法,根据是否含有反问标记可分为显式反问句与隐式反问句。其中隐式反问句表达的情感更为丰富,表现形式也十分复杂,对隐式反问句的识别更具挑战性。本文首先扩充了汉语反问句语料库,语料库规模达到10000余句,接着针对隐式反问句的特点,提出了一种融合情感分析的隐式反问句识别模型。模型考虑了句子的语义信息,上下文信息,并借助情感分析任务辅助识别隐式反问句。实验结果表明,本文提出的模型在隐式反问句识别任务上取得了良好的性能。