Xuxi Chen


2024

pdf bib
RankMean: Module-Level Importance Score for Merging Fine-tuned LLM Models
Gabriel Perin | Xuxi Chen | Shusen Liu | Bhavya Kailkhura | Zhangyang Wang | Brian Gallagher
Findings of the Association for Computational Linguistics: ACL 2024

Traditionally, developing new language models (LMs) capable of addressing multiple tasks involves fine-tuning pre-trained LMs using a wide collection of datasets, a process that often incurs significant computational expenses. Model merging emerges as a cost-effective alternative, allowing the integration of existing models fine-tuned on different tasks into a single model that performs well across all tasks, eliminating the need for additional training. In this paper, we propose RankMean, an algorithm for merging fine-tuned LMs without requiring any downstream data. RankMean determines merging coefficients based on the relative rankings of weight change magnitudes and applies these coefficients for module-wise integration of various fine-tuned models. Our experimental results demonstrate that RankMean outperforms existing baseline methods on multiple benchmarks. The code is available at https://github.com/VITA-Group/RankMean.

2023

pdf bib
DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models
Xuxi Chen | Tianlong Chen | Weizhu Chen | Ahmed Hassan Awadallah | Zhangyang Wang | Yu Cheng
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Gigantic pre-trained models have become central to natural language processing (NLP), serving as the starting point for fine-tuning towards a range of downstream tasks. However, two pain points persist for this paradigm: (a) as the pre-trained models grow bigger (e.g., 175B parameters for GPT-3), even the fine-tuning process can be time-consuming and computationally expensive; (b) the fine-tuned model has the same size as its starting point by default, which is neither sensible due to its more specialized functionality, nor practical since many fine-tuned models will be deployed in resource-constrained environments. To address these pain points, we propose a framework for resource- and parameter-efficient fine-tuning by leveraging the sparsity prior in both weight updates and the final model weights. Our proposed framework, dubbed Dually Sparsity-Embedded Efficient Tuning (DSEE), aims to achieve two key objectives: (i) parameter efficient fine-tuning - by enforcing sparsity-aware low-rank updates on top of the pre-trained weights; and (ii) resource-efficient inference - by encouraging a sparse weight structure towards the final fine-tuned model. We leverage sparsity in these two directions by exploiting both unstructured and structured sparse patterns in pre-trained language models viaa unified approach. Extensive experiments and in-depth investigations, with diverse network backbones (i.e., BERT, RoBERTa, and GPT-2) on dozens of datasets, consistently demonstrate impressive parameter-/inference-efficiency, while maintaining competitive downstream performance. For instance, DSEE saves about 25% inference FLOPs while achieving comparable performance, with 0.5% trainable parameters on BERT. Codes are available at https://github.com/VITA-Group/DSEE.